Skip to main content
Log in

Receptor Mediated Endocytosis by Mesangial Cells Modulates Transmigration of Macrophages

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Background: Accumulation of immune complexes in the mesangium is a common finding. Since migration of macrophages (Mφ) in the mesangium has been demonstrated to be an important event in the development of glomerular lesions, we studied the role of immune complexes and mesangial cell (MC) interaction in the transmigration (Tm) of Mφ. Methods: To determine the effect of MC and immune complexes (aggregated IgG, IgGAg) on transmigration of Mφ, MC were incubated with or without IgGAg in the lower compartment of a modified Boyden Chamber. To determine the effects of the secretory products (as a result of endocytosis of IgGAg by mesangial cells), MC-IgAg conditioned media was prepared and placed in the lower compartment of the Boyden chamber. We evaluated the effects of MC alone, MC + IgGAg, or MC-IgGAg conditioned media on the transmigration of macrophages across a filter. To determine the effect of free radicals on MC-IgAg endocytosis-induced Mφ migration we evaluated the effect of free radical scavengers such as dimethyl thiourea (DMTU) and tetramethylthiourea (TMTU) in MC-IgAg endocytosis-induced Mφ migration. To determine the role of chemokines in MC-IgAs endocytosis-induced Mφ migration we evaluated the effect of ani-MCP-1 antibodies on MC-IgAg endocytosis-induced Mφ migration, and also studied the effects of IgAg on MC mRNA expression of MCP-1 and RANTES. In addition, we evaluated the role of Fc receptors and actin cytoskeleton of MC in transmigration of Mφ. Results: Mesangial cell endocytosis of IgG aggregates (IgGAg) is associated with enhanced (P < 0.001) transmigration of Mφ (control, 11.2 ± 0.2 vs. MC + IgGAg, 22.1 ± 0.9 migrated Mφ/field). IgGAg also induced MC mRNA expression for RANTES and MCP-1 on MC. DMTU and TMTU attenuated (P < 0.001) the MC + IgGAg-induced migration of Mφ as well as IgGAg-induced mRNA expression for RANTES and MCP-1. MC and IgGAg interaction products (MC-IgGAg conditioned media) also increased (P < 0.01) transmigration of Mφ (control, 18.3 ± 1.7 vs. MC-IgGAg conditioned media, 30.7 ± 0.6 Mφ/field). This effect of MC-IgGAg conditioned media on the migration of macrophages was dose dependent. Anti-MCP-1 antibody partially inhibited MC-IgGAg-induced migration of macropahges. MC and monomeric IgG (MIgG) interaction (MC-MIgG conditioned media) showed a lower (P < 0.05) migration of Mφ when compared to the MC-IgGAg conditioned media. MC-IgGAg conditioned media prepared from cytochalasin B pretreated MCs also showed a lower (P < 0.001) migration of Mφ when compared with MC-IgGAg conditioned media-induced migration. Conclusions: These results indicate that MC-IgGAg conditioned media-induced transmigration of macrophages may be mediated through the generation of RANTES and MCP-1 by MC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. COUSER, W. G. 1993. Pathogenesis of glomerulonephritis. Kidney Int. 44:S19-S26.

    Google Scholar 

  2. MICHAEL, A. F., W. F. KEANE, L. RAIJ, R. L. VERINER, and S. M. MAUER. 1980. The glomerularmesangium. Kidney Int. 17:141-154.

    PubMed  Google Scholar 

  3. STRIKER, G. E., M. MANNIK, and M. TUNG. 1979. Role of marrow-derived monocytesand mesangial cells in removal of immune complexes from renal glomeruli. J. Exp. Med. 149:127-136.

    PubMed  Google Scholar 

  4. SRAER, J. D., C. ADIDA, M. N. PERALDI, E. RONDEAU, and A. KANFER. 1993. Species-specific properties of the glomerular mesangium. J. Am. Soc. Nephrol. 3:1342-1350.

    PubMed  Google Scholar 

  5. HAAKENSTAD, A. O., and M. MANNIK. 1976. The disappearance kinetics of soluble immune complexes prepared with reduced and alkylated antibodies in mice. Lab. Invest. 35:283-292.

    PubMed  Google Scholar 

  6. KEANE, W. F., and L. RAIJ. 1987. Determinants of glomerular mesangial localization of immunecomplexes. The role of endothelial fenestrae. Lab. Invest. 45:366-371.

    Google Scholar 

  7. LATTA, H., and S. FLIEGEL. 1985. Mesangial fenestration, sieving, filtration, and flow. Lab. Invest. 52:591-598.

    PubMed  Google Scholar 

  8. TUBARO, E., G. BORELLI, C. CROCE, G. CAVALLO, and C. SANTINAGELI, 1983. Effect of morphine on resistance to infection. J. Infect. Dis. 148:656-665.

    PubMed  Google Scholar 

  9. MARTIN, M., R. SCHWINZER, H. SCHELLEKENS, and K. RESCH. 1989. Glomerular mesangial cells in local inflammation. Induction of the expression of MHC class II antigens by IFN-gamma. J. Immunol. 142:1878-1894.

    Google Scholar 

  10. NEUWIRTH, R., P. C. SINGHAL, B. DIAMOND, R. M. HAYS, L. LOBMEYER, K. CLAY, and D. SCHLONDORFF. 1988. Evidence for immunoglobulin Fc receptor-mediated prostaglandin E2 and platelets activating factor formation by cultured mesangial cells. J. Clin. Invest. 82:936-944.

    PubMed  Google Scholar 

  11. SINGHAL, P. C., G. DING, S. DECANDIDO, N. FRANKI, R. M. HAYS, and D. SCHLONDORFF. 1987. Endocytosis by cultured mesangial and associated changes in prostaglandin E2 synthesis. Am. J. Physiol. 252:F627-F634.

    PubMed  Google Scholar 

  12. BAUD, L., J. HAGEGE, J. SRAER, E. RONDEAU, J. PEREZ, and R. ARDAILLOU. 1983. Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis is associated with lipoxygenase activity. J. Exp. Med. 158:1836-1852.

    PubMed  Google Scholar 

  13. WOLF, G., U. HABERSTROH, and E. G. NEILSON. 1992. Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am. J. Pathol. 140:95-107.

    PubMed  Google Scholar 

  14. SATRIANO, J., M. SHULDINER, K. HORA, Y. XING, Z. SHAN, and D. SCHLONDORFF. 1990. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JD/?MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin. G. J. Clin. Inv. 92:1564-1571.

    Google Scholar 

  15. HORISBERGER, M., and M. VONLANTHAN. 1978. Simultaneous localization of an hepatic binding protein specific for galactose and of galactose containing receptors on rat hepatocytes. J. Histochem. Cytochem. 26:960-966.

    PubMed  Google Scholar 

  16. SINGHAL, P. C., A. SANTIAGO, J. SATRIANO, R. M. HAYS, and D. SCHLONDORFF. 1990. Effects of vasoactive agents on uptake of immunoglobulin-G complexes by mesangial cells. Am. J. Physiol. 258:F589-F596.

    PubMed  Google Scholar 

  17. CHOMCZYNSKI, P., and N. SACCHI. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.

    PubMed  Google Scholar 

  18. WENZEL, U. O., and H. E. ABBOUD. 1995. Chemokines and renal disease. Am. J. Kid. Dis. 26:982-994.

    PubMed  Google Scholar 

  19. HEEGER, P., G. WOLF, C. MEYERS, M. J. SUN, S. C. O'FARRELL, A. M. KRENSKY, and E. G. NEILSON. 1992. Isolation and characterization of cDNA from renal tubular epithelium encoding murine RANTES. Kidney Int. 41:220-225.

    PubMed  Google Scholar 

  20. GRANDALIANO, G., A. I. VALENTE, M. M. ROZEK, and H. E. ABBOUD. 1994. Gamma interferon stimulates monocyte chemotactic protein (MCP-1) in human mesangial cells. J. Lab. Clin. Med. 123:282-289.

    PubMed  Google Scholar 

  21. WOLF, G., S. ABERLE, F. THAISS, P. J. NELSON, A. M. KERNSKY, E. G. NEILSON, and R. A. K. STAHL. 1993. TNFá induces expression of the chemoattractant cytokine RANTES in cultured mouse mesangial cells. Kidney Int. 44:795-804.

    PubMed  Google Scholar 

  22. POSTLETHWAITE, A. E., and A. H. KANG. 1976. Collagen and collagen peptide-induced chemotaxis of human blood monocytes. J. Exp. Med. 143:1299-1305.

    PubMed  Google Scholar 

  23. WAHL, S. M., D. A. HUNT, L. M. WAKEFIELD, N. MCCARTNEY-FRANCIS, L. M. WAHL, A. B. ROBERTS, and M. B. SPORN. 1987. Transforming growth factor type b induces chemotaxis and growth factor production. Proc. Natl. Acad. Sci. 84:5788-5792.

    PubMed  Google Scholar 

  24. ZOJA, C., J. M. WANG, S. BETTONI, M. SIRONI, D. RENZI, F. CHIAFFARINO, H. E. ABBOUD, J. VAN DAMME, A. MANTOVANI, G. REMUZZI, and A. RAMBALDI. 1991. Interleukin-1 β and tumor necrosis factor-α induce gene expression and production of leukocyte chemotactic factors, colony stimulating factors, and interleukin-6 in human mesangial cells. Am. J. Pathol. 138:991-1003.

    PubMed  Google Scholar 

  25. ROVIN, B. H., T. YOSHIMURA, AND L. TAN. 1992. Cytokine-induced production of monocyte chemoattractant protein-1 by cultured human mesangial cells. J. Immunol. 148:2148-2153.

    PubMed  Google Scholar 

  26. HORA, K., J. SATRIANO, A. SANTIAGO, T. MORI, E. R. STANLEY, Z. SHAN, and D. SCHLONDORFF. 1992. Receptors for IgG complexes activate synthesis of monocyte chemoattractant 1 and colony stimulating factor 1. Proc. Natl. Acad. Sci. 89:1745-1749.

    PubMed  Google Scholar 

  27. SATRIANO, J., K. HORA, Z. SHAN, E. R. STANLEY, T. MORI, and D. SCHLONDORFF. 1994. Regulation of monocyte chemoattractant protein 1 and macrophage colony stimulating factor-1 by IFN gamma, tumor necrosis factor-α, IgG aggregates, and cAMP in mouse mesangial cells. J. Immunol. 150:1737-1741.

    Google Scholar 

  28. GRANDALIANO, G., A. J. VALENTE, and H. E. ABBOUD. 1994. A novel biologic activity of thrombin: Stimulation of monocyte chemotactic protein production. J. Exp. Med. 179:1737-1741.

    PubMed  Google Scholar 

  29. ROVIN, B. H., and L. C. TAN. 1993. LDL stimulates mesangial fibronectin production and chemoattractant expression. Kidney Int. 43:218-225.

    PubMed  Google Scholar 

  30. GRANDE, J. P., M. L. JONES, C. L. SWENSON, P. D. KILLEN, and J. S. WARREN. 1994. Lipopolysaccharide induces monocyte chemoattractant production by rat mesangial cells. J. Lab. Clin. Med. 124:112-117.

    PubMed  Google Scholar 

  31. SATRIANO, J. A., B. BERNHARD, B. LUCKOW, P. NELSON, and D. SCHLONDORFF. 1997. Regulation of RANTES and ICAM-1 expression in murine mesangial cells. J. Am. Soc. Nephrol. 8:596-603.

    PubMed  Google Scholar 

  32. COUSER, W. G. 1990. Mediation of immune glomerular injury. J. Am. Soc. Nephrol. 1:13-29.

    PubMed  Google Scholar 

  33. KAWASAKI, K., E. YAOITA, T. YAMAMOTO, T. TAMATANI, M. MIYASAKA, and I. KIHARA. 1993. Antibodies against intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 prevent glomerular injury in rat experimental crescentic glomerulonephritis. J. Immunol. 150:1074-1083.

    PubMed  Google Scholar 

  34. DING, G., I. PESEK-DIAMOND, and J. R. DIAMOND. 1993. Cholesterol, macrophages, and gene expression of TGF-b and fibronectin during nephrosis. Am. J. Physiol. 264:F577-F564.

    PubMed  Google Scholar 

  35. DING, G., H. VAN GOOR, J. FRYE, and J. R. DIAMOND. 1994. Transforming growth factor-β expression in macrophages during hypercholesterolemic states. Am. J. Physiol. 36:F937-F943.

    Google Scholar 

  36. VAN GOOR, H., G. DING, D. KEES-FOLTS, J. GROND, G. F. SCHREINER, and J. R. DIAMOND. 1994. Macrophages and renal disease. Lab. Inv. 71:456-464.

    Google Scholar 

  37. DIAMOND, J. R., and I. PESEK. 1991. Subethal X-irradiation during acute puromycin nephrosis prevents late renal injury: role of glomerular and interstitial macrophages. Am. J. Physiol. 260:F760-F767.

    Google Scholar 

  38. SCANDRETT, A. L., J. KISSANE, and J. B. LEFKOWITH. 1995. Acute inflammation is the harbinger of glomerulosclerosis in anti-glomerular basement membrane nephritis. Am. J. Physiol. 268:F258-F265.

    PubMed  Google Scholar 

  39. RAPPAPORT, J., J. B. KOPP, and P. E. KLOTMAN. 1994. Host virus interactions and the molecular regulation of HIV-1: Role in the pathogenesis of HIV-associated nephropathy. Kidney Int. 46:16-27.

    PubMed  Google Scholar 

  40. BODI, I., A. A. ABRAHAM, and P. L. KIMMEL. 1994. Macrophages in human immunodeficiency virus-associated kidney disease. Am. J. Kid. Dis. 24:762-767.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, P.C., Gupta, S., Sharma, P. et al. Receptor Mediated Endocytosis by Mesangial Cells Modulates Transmigration of Macrophages. Inflammation 24, 519–532 (2000). https://doi.org/10.1023/A:1007073306394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007073306394

Keywords

Navigation