Skip to main content
Log in

Respiration from coarse wood litter in central Amazon forests

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Respiration from coarse litter (trunks and large branches >10 cm diameter) was studied in central Amazon forests. Respiration ratesvaried over almost two orders of magnitude (1.003–0.014 µg Cg−1 C min−1, n = 61), and weresignificantly correlated with wood density (r2 adj= 0.42), and moisture content (r2 adj= 0.39). Additional samples taken from a nearby pasture indicatedthat wood moisture content was the most important factor controllingrespiration rates across sites (r2 adj =0.65). Based on average coarse litter wood density and moisture content,the mean long-term carbon loss rate due to respiration was estimated tobe 0.13 yr−1 (range of 95% prediction interval(PI) = 0.11–0.15 yr−1). Comparing meanrespiration rate with mean mass loss (decomposition) rate from aprevious study, respiratory emissions to the atmosphere from coarselitter were predicted to be 76% (95% PI =65–88%) of total carbon loss, or about 1.9 (95% PI= 1.6–2.2) Mg C ha−1yr−1. Optimum respiration activity corresponded toabout 2.5 g H2O g−1 dry wood, and severelyrestricted respiration to < 0.5 g H2O g−1dry wood. Respiration from coarse litter in central Amazon forests iscomparable in magnitude to decomposing fine surface litter (e.g. leaves,twigs) and is an important carbon cycling component when characterizingheterotrophic respiration budgets and net ecosystem exchange(NEE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthor JS (1989) Respiration and Crop Productivity. Springer-Verlag, New York

    Google Scholar 

  • Boddy L (1983a) Effect of temperature and water potential on growth rate of wood-rotting Basidiomycetes. Trans. Brit. Mycol. Soc. 80: 141–149

    Google Scholar 

  • Boddy L (1983b) Microclimate and moisture dynamics of wood decomposing in terrestrial ecosystems. Soil Biol. Biochem. 15: 149–157

    Google Scholar 

  • Bravard S & Righi D (1989) Geochemical differences in an Oxisol-Spodosol toposequence of Amazonia, Brazil. Geoderma 44: 29–42

    Google Scholar 

  • Carptenter SE, Harmon ME, Ingham ER, Kelsey RG, Lattin JD & Schowalter TD (1988) Early patterns of heterotrophic activity in conifer logs. Proceedings of the Royal Society of Edinburgh 94B: 33–43

    Google Scholar 

  • Chambers JQ, N Higuchi & JP Schimel (1998) Ancient trees in Amazonia. Nature 391: 135–136

    Google Scholar 

  • Chambers JQ (1998) The role of large wood in the carbon cycle of central Amazon rain forest. Ph.D. thesis, University of California, Santa Barbara, USA

    Google Scholar 

  • Chambers JQ, N Higuchi, LV Ferreira, JM Melack & JP Schimel (2000) Decomposition and carbon cycling of dead trees in tropical evergreen forests of the central Amazon. Oecologia, in press

  • Davidson EA & SE Trumbore (1995) Gas diffusivity and the production of CO2 in deep soils of the eastern Amazon. Tellus 47B: 550–565

    Google Scholar 

  • Dix NJ (1984) Minimum water potentials for growth of some litter-decomposing agarics and other basidiomycetes. Trans. Brit. Mycol. Soc. 83: 152–153

    Google Scholar 

  • Dix NJ (1985) Changes in relationship between water content and water potential after decay and its significance for fungal successions. Trans. Brit. Mycol. Soc. 85: 649–653

    Google Scholar 

  • Dix NJ & J Webster (1995) Fungal Ecology. Chapman & Hall, London

    Google Scholar 

  • Fan S-C, SC Wofsy, PS Bakwin & DJ Jacob (1990) Atmosphere-Biosphere exchange of CO2 and O3 in the Central Amazon forest. Journal of Geophysical Research 95: 16851–16864

    Google Scholar 

  • Ferraz J, S Ohta & PC Sales (1998) Distribução dos solos ao longo de dois transectos em floresta primária ao norte de Manaus Pesquisas Florestais para a Conservação da Floresta e Reabilitação de Áreas Degradadas da Amazônia (pp 109–144 ). MCT-INPA/JICA, Manaus, Brasil

    Google Scholar 

  • Goulden ML, BC Daube, S-M Fan, DJ Sutton, A Bazzaz, JW Munger & SC Wofsy (1997) Gross CO2 uptake by a black spruce forest. Journal of Geophysical Research 102: 28, 987–28, 996

    Google Scholar 

  • Goulden ML, JW Munger, SM Fan, BC Daube & SC Wofsy (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob. Change Biol. 2: 169–182

    Google Scholar 

  • Grace J, J Lloyd, J McIntyre, AC Miranda, P Meir, HS Miranda, C Nobre, J Moncrieff, J Massheder, Y Malhi, I Wright & J Gash (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia, 1992–1993. Science 270: 778–780

    Google Scholar 

  • Harmon ME, JF Franklin, FJ Swanson, P Sollins, SV Gregory, JD Lattin, NH Anderson, SP Cline, NG Aumen, JR Sedell, GW Lienkaemper, K Cromack & KW Cummins (1986) Ecology of coarse woody debris in temperate ecosystems. In: Macfadyen A & Ford ED (eds) Advances in Ecological Research (pp 133–302 ). Academic Press, London

    Google Scholar 

  • Harmon ME, DF Whigham, J Sexton & I Olmsted (1995) Decomposition and mass of woody detritus in the dry tropical forests of the northeastern Yucatan Peninsula, Mexico. Biotropica 27: 305–316

    Google Scholar 

  • Higuchi N, JBS Ferraz, L Antony, F Luizão, R Luizão, Y Biot, I Hunter, J Proctor & S Ross (1997) Biomassa e Nutrients Florestais: Projeto BIONTE Relatorio Final. Instituto Nacional de Pesquisas da Amazônia, Manaus, Brasil

    Google Scholar 

  • Houghton RA (1991) Tropical deforestation and atmospheric carbon dioxide. Clim. Change 19: 99–118

    Google Scholar 

  • Houghton RA, DL Skole, CA Nobre, JL Hackler, KT Lawrence & WH Chomentowski (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403: 301–304

    Google Scholar 

  • Laurance WF, SG Laurance, LV Ferreira, JM Rankin-de Merona, C Gascon & TE Lovejoy (1997) Biomass collapse in Amazonian forest fragments. Science 278: 1117–1118

    Google Scholar 

  • Law BE, MG Ryan & PM Anthoni (1999) Seasonal and annual respiration of a ponderosa pine ecosystem. Glob. Change Biol. 5: 169–182

    Google Scholar 

  • Lovejoy T & R Bierregaard (1990) Central Amazonian forests and the Minimum Critical Size of Ecosystem project. In: Gentry A (Ed) Four Neotropical Rainforests (pp 60–71 ). Yale University Press, New Haven, Connecticut, USA

    Google Scholar 

  • Lund CP, WJ Riley, LL Pierce & CB Field (1999) The effects of chamber pressurization on soil-surface CO2 flux and the implications for NEE measurements under elevated CO2. Glob. Change Biol. 5: 269–281

    Google Scholar 

  • Malhi Y, AD Nobre, J Grace, B Kruijt, MGP Pereira, A Culf & S Scott (1998) Carbon dioxide transfer over a Central Amazonian rain forest. J. of Geophys. Res.

  • Marra JL & RL Edmonds (1994) Coarse woody debris and forest floor respiration in an oldgrowth coniferous forest on the Olympic Peninsula, Washington, USA. Can. J. For. Res. 24: 1811–1817

    Google Scholar 

  • Marra JL & RL Edmonds (1996) Coarse woody debris and soil respiration in a clearcut on the Olympic Peninsula, Washington, USA. Can. J. For. Res. 26: 1337–1345

    Google Scholar 

  • Neter J, MH Kutner, CJ Nachtsheim & W Wasserman (1996) Applied Linear Statistical Models. Irwin, Chicago

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322–331

    Google Scholar 

  • Parton WJ, DS Schimel, CV Cole & DS Ojima (1987) Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Sci. Soc. Am. J. 51

  • Parton WJ, JWB Stewart & C v Cole (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochem. 5: 109–131

    Google Scholar 

  • Phillips OL, Y Malhi, N Higuchi, WF Laurance, PV NÚñez, RM Vásquez, SG Laurance, LV Ferreira, M Stern, S Brown & J Grace (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282: 439–442

    Google Scholar 

  • Potter CS, JT Randerson, CB Field, PA Matson, PM Vitousek, HA Mooney & SA Klooster (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob. Biogeochem. Cycl. 7: 811–841

    Google Scholar 

  • Rankin-De Merona JM, GT Prance, RW Hutchings, MFD Silva, WA Rodrigues & ME Uehling (1992) Preliminary results of a large-scale tree inventory of upland rain forest in the central Amazon. Acta Amazon. 22: 493–534

    Google Scholar 

  • Rayner ADM & L Boddy (1988) Fungal Decomposition of Wood: Its Biology and Ecology. John Wiley & Sons

  • Ribeiro JELS, MJG Hopkins, A Vicentini, CA Sothers, MAS Costa, JM Brito, MAD Souza, LHP Martins, LG Lohmann, PACL Assunção, EC Pereira, CF Silva, MR Mesquita & LC Procópio (1999) Flora da Reserva Ducke. Manaus, Amazonas, Brasil

  • Ryan MG, RM Hubbard, DA Clark & RL Sanford, Jr. (1994) Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits. Oecologia (Berlin) 100: 213–220

    Google Scholar 

  • Sampaio EVSB, A Dall'Olio, KS Nunes & EEP Lemos (1993) A model of litterfall, litter layer losses and mass transfer in a humid tropical forest at Pernambuco, Brazil. Journal of Tropical Ecology 9: 291–301

    Google Scholar 

  • Scheffer TC (1986) O2 requirements for growth and survival of wood-decaying and sapwood staining fungi. Can. J. Bot. 64: 1957–1963

    Google Scholar 

  • Sotta ED (1998) Fluxo de CO2 entre solo e atmosfera em floresta tropical Úmida da Amazônia central. M.S., Instituto Nacional de Pesquisas da Amazônia, Manaus

  • Summers PM (1998) Estoque, Decomposição e Nutrients da Liteira Grossa em Floresta de Terra-Firme, na Amazônia Central. MS thesis, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brasil

    Google Scholar 

  • Thacker DG & HM Good (1952) The composition of air in trunks of sugar maple in relation to decay. Can. J. Bot. 30: 475–485

    Google Scholar 

  • Trumbore SE, EA Davidson, P Barbosa de Carmago, DC Nepstad & LA Martinelli (1995) Below ground cycling of carbon in forests and pastures of Eastern Amazonia. Glob. Biogeochem. Cycl. 9: 515–528

    Google Scholar 

  • Wieder RK & GE Lang (1982) A critique of the analytical methods used in examining decomposition data. Ecology 63: 1636–1642

    Google Scholar 

  • Yoneda T (1985) Relation of wood diameter to the rates of dry weight loss and CO2 evolution of wood litter in evergreen oak forests. Jap. J. Ecol. 35: 57–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Q. Chambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, J.Q., Schimel, J.P. & Nobre, A.D. Respiration from coarse wood litter in central Amazon forests. Biogeochemistry 52, 115–131 (2001). https://doi.org/10.1023/A:1006473530673

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006473530673

Navigation