Skip to main content
Log in

Paucity of Retinoic Acid Receptor Alpha (RARα) Nuclear Immunostaining in Gliomas and Inability of Retinoic Acid to Influence Neural Cell Adhesion Molecule (NCAM) Expression

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Neural cell adhesion molecule (NCAM) is down-regulated during periods of embryological cell migration and may be important in local tumor migration or metastases. Conflicting information exists in the literature about NCAM expression in human glial tumors and little is known about its expression in human brain metastases. We immunohistochemically stained a panel of 43 primary human brain tumors and their cultured counterparts for NCAM including glioblastoma multiformes, anaplastic astrocytomas, oligodendrogliomas, and contrasted their staining with a panel of 3 meningiomas, 11 brain metastases, and 5 normal brain samples utilizing the monoclonal antibody NKH-1. Most gliomas and metastatic melanomas and lung carcinomas showed a high percentage of cells positive for NCAM expression while NCAM staining was negative for other carcinomas. No difference was seen between intensity or percentage of cells that were NCAM positive, based on tumor grade or type. In glioma cell lines, NCAM expression was lost upon passage. In 15 glioma cell lines we also determined NCAM isoform expression by reverse transcription/polymerase chain reaction (RT/PCR) and found that 6 of 15 had message for NCAM 180, 8 of 15 for NCAM 140, and only 3 of 15 had message for NCAM 120. Normal brains always contained message for the 180 isoform and usually had mRNA for all 3 isoforms. Using monoclonal antibodies for retinoic acid receptor alpha (RARα), we found nuclear staining in melanomas and lung carcinomas metastatic to brain and only rarely in gliomas. Neither the relative antigen density of NCAM nor the percent of NCAM-positive cells appreciably changed upon incubation with retinoic acid (RA), as measured by flow cytometry. RARα was not found at a level measurable by immunohistochemistry in nuclei of most glial tumors, providing an explanation for why RA might not induce NCAM expression. Whether paucity of RARα on primary gliomas might also correlate with results from clinical trials showing limited efficacy of RA in treatment of human gliomas awaits further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodts GE, Black KL: Trans retinoic acid inhibits in vivo tumour growth of C6 glioma in rats: Effect negatively influenced by nerve growth factor. Neurol Res 16: 184–186, 1994

    Google Scholar 

  2. Yung WKA, Lotan R, Iee P, Lotan D, Steck PA: Modulation of growth and epidermal growth factor receptor activity by retinoic acid in human glioma cells. Cancer Research 49: 1014–1019, 1989

    Google Scholar 

  3. Rutka JT, DeArmond SJ, Giblin J, McCulloch JR, Wilson CB, Rosenblum ML: Effect of retinoids on the proliferation, morphology and expression of glial fibrillary acidic protein of an anaplastic astrocytoma cell line. Int J Cancer 42: 419–427, 1988

    Google Scholar 

  4. Castaigne S, Chomienne C, Daniel MT, Bellarini P, Berger R, Fenaux P, Degos L: All trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia I. Clinical results. Blood 76: 1704–1709, 1990

    Google Scholar 

  5. Alcalay M, Zangrilli D, Pandolfi PP, Longo L, Mencarelli A, Giacomucci A, Roechi M, Biondi A, Rambaldi A, Lo Coco F, Diveno D, Donti E, Grignani F, Pelicci PG: Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor locus. Proc Nat Acad Sci 88: 1977–1981, 1991

    PubMed  Google Scholar 

  6. Kaba SE, Kyritsis AP, Conrad C, Gleason MJ, Newman R, Levin VA, Yung WKA: The treatment of recurrent cerebral gliomas with all trans retinoic acid (tretinoin). J Neuro-Oncology 34: 145–151, 1997

    Article  Google Scholar 

  7. Phuphanich S, Scott C, Fischbach AJ, Langer C, Yung WKA: All trans retinoic acid: a phase II radiation therapy oncology group study (RTOG 91-13) in patients with recurrent malignant astrocytoma. J Neuro-Oncology 34: 193–200, 1997

    Article  Google Scholar 

  8. Defer G-L, Adle-Biassette H, Ricolfi F, Martin L, Authier F-J, Chomienne C, Degos L, Degos J-D: All trans retinoic acid in relapsing malignant gliomas: clinical and radiological stabilization associated with the appearance of intratumoral calcifications. J Neuro-Oncology 34: 169–177, 1997

    Article  Google Scholar 

  9. Franklin WA: Retinoids: Old data and new. Lung Cancer Institute of Colorado, Winter/Spring Newsletter, 1992, pp 10–11, 20.

    Google Scholar 

  10. Husmann M, Görgen I, Weisgerber C, Bitter-Suermann D: Up-regulation of embryonic NCAM in an EC cell line by retinoic acid. Develop Biol 136: 194–200, 1989

    Article  PubMed  Google Scholar 

  11. Edelman GM: Cell adhesion molecules. Science 219: 450–457, 1983

    PubMed  Google Scholar 

  12. Albelda SM: Biology of Disease: Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest 68: 4–15, 1993

    PubMed  Google Scholar 

  13. CouldwellWT, de Tribolet N, Antel JP, Gauthier T, Kuppner MC: Adhesion molecules and malignant gliomas: implications for tumorigenesis. J Neurosurg 76: 782–791, 1992

    PubMed  Google Scholar 

  14. Owens GC, Orr EA, Kleinschmidt-DeMasters BK, Muschel RJ, Berens ME, Kruse CA: Over-expression of a transmembrane isoform of neural cell adhesion molecule (NCAM) alters the invasiveness of rat CNS-1 glioma. Cancer Res. 58: 2020–2028, 1998

    PubMed  Google Scholar 

  15. Figarella-Branger DF, Durbec PL, Rougon GN: Differential spectrum of expression of neural cell adhesion molecule isoforms and L1 adhesion molecules on human neuroectodermal tumors. Cancer Res 50: 6364–6370, 1990

    PubMed  Google Scholar 

  16. Patel K, Bourne S, Coakham H, Kemshead JT: Expression of the neural cell adhesion molecule in human brain tumours. Biochem Soc Transact 18: 264, 1990

    Google Scholar 

  17. Kleinschmidt-DeMasters BK, Conway DR, Franklin WA, Lillehei KO, Kruse CA: Neural cell adhesion molecule expression in human pituitary adenomas. J Neuro-Oncology 25: 205–213, 1995

    Google Scholar 

  18. Walsh FS, Doherty P: Structure and function of the gene for neural cell adhesion molecule. The Neurosciences 3: 271–284, 1991

    Google Scholar 

  19. Chorny JA, Kruse CA, Kleinschmidt-DeMasters BK, Garza-Williams S, Conway DR, Gaub M-P, Rochette-Egly C, Franklin WA: Immunohistochemical study of the retinoic acid receptor in normal versus neoplastic human tissues. Appl Immunohistochem 3(1): 64–71, 1995

    Google Scholar 

  20. Paasivuo R, Saksela E: Non-specific binding of mouse immunoglobulins by swollen-bodied astrocytes – a potential source of confusion in human brain immunohistochemistry. Acta Neuropathol 59: 103–108, 1983

    Article  PubMed  Google Scholar 

  21. Spanjaard RA, Ikeda M, Lee PJ, Charpentier B, WhinWW, Eberlein TJ: Specific activation of retinoic acid receptors (RARs) and retinoid X receptors reveals a unique role of RARgamma in induction of differentiation and apoptosis of S91 melanoma cells. J Biol Chem 272(30): 18990–18999, 1997

    Article  PubMed  Google Scholar 

  22. Schadendorf D, Kern MA, Artuc M, Pahl HL, Rosenbach T, Fichtner I, Nurnberg W, Stuting S, von Stebut E, Worm M, Makki A, Jurgovsky K, Kolde G, Henz BM: Treatment of melanoma cells with the synthetic retinoid CD437 induces apoptosis via activation of AP-1 in vitro, and causes growth inhibition in xenografts in vivo. J Cell Biol 135(6 Pt 2): 1889–1889, 1996

    Article  PubMed  Google Scholar 

  23. Triozzi PL, Walker MJ, Pellegrini AE, Dayton MA: Isotretinoin and recombinant interferon alfa-2a therapy of metastatic malignant melanoma. Cancer Invest 14(4): 293–298, 1996

    PubMed  Google Scholar 

  24. Melino G, Thiele CJ, Knight RA, Piacentini M: Retinoids and the control of growth/death decisions in human neuroblastoma cell lines. J Neuro-Oncol: 31(1–2): 65–83, 1997

    Article  Google Scholar 

  25. Ashwell JD: When complex worlds collide: retinoic acid and apoptosis. Cell Death Differ. 5: 1–3, 1998

    Article  PubMed  Google Scholar 

  26. Szondy Z, Reichert U, Fesus L: Retinoic acids regulate apoptosis of T lymphocytes through an interplay between RAR and RXR receptors. Cell Death Differ 5: 4–10, 1998

    Article  PubMed  Google Scholar 

  27. Nagy L, Thomazy VA, Heyman RA, Davies PJA: Retinoidinduced apoptosis in normal and neoplastic tissues. Cell Death Differ 5: 11–19, 1998

    Article  PubMed  Google Scholar 

  28. Mattei M-G, Riviere M, Krust A, Ingvarsson S, Vennstrom B, Islam MQ, Levan G, Kastner P, Zelent A, Chambon P, Szpierer J, Szpierer C: Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse and rat genomes. Genomics 10: 1061–1069, 1991

    Article  PubMed  Google Scholar 

  29. Hoffman S, Edelman GM: Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci USA 80: 5762–5766, 1983

    PubMed  Google Scholar 

  30. Aletsee-Ufrecht MC, Langley OK, Gratzl M: NCAM expression in endocrine cells. Acta Histochemica 38: 45–50, 1990

    PubMed  Google Scholar 

  31. Langley OK, Aletsee-Ufrecht MC, Grant NJ, Gratzl M: Expression of the neural cell adhesion molecule NCAM in endocrine cells. J Histochem Cytochem 37: 781–791, 1989

    PubMed  Google Scholar 

  32. Aletsee-Ufrecht MC, Langley K, Gratzl O, Gratzl M: Differential expression of the neural cell adhesion molecule NCAM 140 in human pituitary tumors. FEBS Lett 272: 45–49, 1990

    Article  PubMed  Google Scholar 

  33. Conway DR, Kleinschmidt-DeMasters BK, Franklin WA, GaubMP, Rochette-Egly C, Kruse CA: Expression of neural cell adhesion molecule and retinoic acid receptor in normal brain and in glial and non-glial brain tumors. Mol Biol Cell 3: 216a (abstr), 1992

    Google Scholar 

  34. Molenaar WM, de Leij L, Trojanowski JQ: Neuroectodermal tumors of the peripheral and the central nervous system share neuroendocrine N-CAM-related antigens with small cell lung carcinomas. Acta Neuropathol 83: 46–54, 1991

    Article  PubMed  Google Scholar 

  35. Edvardsen K, Brünner N, Spang-Thomsen M, Walsh FS, Bock E: Migration of tumor cells. Int J Dev Neurosci 11(5): 681–690, 1993

    Article  PubMed  Google Scholar 

  36. Edvardsen K, Chen W, Rucklidge G, Walsh FS, Öbrink B, Bock E: Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases. Proc Natl Acad Sci USA 90: 11463–11467, 1993

    PubMed  Google Scholar 

  37. Kruse CA, Merchant RE: Cellular therapy of brain tumors: Clinical trials. In:Kornblith PK, WalkerMD(eds) Advances in Neuro-Oncology II. Futura Publishing Company, Inc., Armonk, NY, 1997, p 487

    Google Scholar 

  38. Lanier LL, Chang C, Azuma M, Ruitenberg JJ, Hemperly JJ, Phillips JH: Molecular and functional analysis of human natural killer cell-associated neural cell adhesion molecule (N-CAM/CD56). J Immunol 146(12): 4421–4426, 1991

    Google Scholar 

  39. Nitta T, Yagita H, Sato K, Okumura K: Involvement of CD56 (NKH-1/Leu-19 antigen) as an adhesion molecule in natural killer-target cell interaction. J Exp Med 170: 1757–1761, 1989

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinschmidt-DeMasters, B., Orr, E.A., Savelieva, E. et al. Paucity of Retinoic Acid Receptor Alpha (RARα) Nuclear Immunostaining in Gliomas and Inability of Retinoic Acid to Influence Neural Cell Adhesion Molecule (NCAM) Expression. J Neurooncol 41, 31–42 (1999). https://doi.org/10.1023/A:1006162211296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006162211296

Navigation