Skip to main content
Log in

Signal transduction pathways and their relevance in human astrocytomas

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Aberrations in a number of signal transduction pathwayshave been identified as playing a key rolein the molecular pathogenesis of astrocytomas and theirprogression to high grade glioblastoma multiforme (GBM). GBMsare characterized by overexpression of the Platelet DerivedGrowth Factor Receptors (PDGFR) and their ligands (PDGF),as well as the Epidermal Growth Factor Receptor(EGF-R). These receptors activate the Ras pathway, akey cellular signal transduction pathway, culminating in theactivation of a wide range of Ras-dependent cellularevents. GBMs have also been found to eitheroverexpression or lose expression of various Protein KinaseC (PKC) isoforms. Major strides are being madein developing pharmacological agents which specifically inhibit thesegrowth factor receptors and intracellular signal transduction pathways.Elucidating the role of these pathways in GBMsis thus of major clinical importance, as thesenovel molecularly-targeted agents may prove of use inthe clinical management of GBMs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gronwald RGK, Grant FJ, Haldeman BA, Hart CE, O’Hara PJ, Hagen FS, Ross R, Bowen-Pope DF, Murray MJ: Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: evidence for more than one receptor class. Proc Natl Acad Sci U S A 85: 3435–3439, 1988

    Google Scholar 

  2. Hart CE, Forstrom JW, Kelly JD, Seifert RA, Smith RA, Ross R, Murray MJ, Bowen-Pope DF: Two classes of PDGF receptor recognize different isoforms of PDGF. Science 240: 1529–1531, 1988

    Google Scholar 

  3. Matsui T, Heidaran M, Miki T, Popescu N, LaRochelle W, Kraus M, Pierce J, Aaronson S: Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243: 800–803, 1989

    Google Scholar 

  4. Yarden Y, Escobedo JA, Kuang WJ, Yang-Feng TL, Daniel TO, Tremble PM, Chen EY, Ando ME, Harkins RN, Francke U, Fried VA, Ullrich A, Williams LT: Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323: 226–232, 1986

    Google Scholar 

  5. Betsholtz CH, Johnsson A, Heldin C, Westermark B: Efficient reversion of simian sarcoma virus-transformation and inhibition of growth factor-induced mitogenesis by suramin. Proc Natl Acad Sci USA 83: 6440–6444, 1986

    Google Scholar 

  6. Chiu IM, Reddy EP, Givol D, Robbins KC, Tronick SR, Aaronson SA: Nucleotide sequence analysis identifies the human c-sis proto-oncogene as a structural gene for platelet-derived growth factor. Cell 37: 123–129, 1984

    Google Scholar 

  7. Dalla-Favera R, Gallo RC, Giallongo A, Croce CM: Chromosomal localization of the human homolog (c-sis) of the simian sarcoma virus oncogene. Science 218: 686–688, 1982

    Google Scholar 

  8. Beckmann MP, Betsholtz C, Heldin CH, Westermark B, Di Marco E, Di Fiore PP, Robbins KC, Aaronson SA: Comparison of the biological properties and transforming potential of human PDGF-A and PDGF-B chains. Science 241: 1346–1349, 1988

    Google Scholar 

  9. LaRochelle WJ, Giese N, May-Siroff M, Robbins KC, Aaronson SA: Molecular localization of the transforming and secretory properties of PDGF A and PDGF B. Science 248: 1541–1544, 1990

    Google Scholar 

  10. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin CH, Huang JS, Deuel TF: Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304: 35–39, 1983

    Google Scholar 

  11. Robbins KC, Antoniades HN, Devare SG, Hunkapiller MW, Aaronson SA: Structural and immunological similarities between simian sarcoma virus gene product(s) and human platelet-derived growth factor. Nature 305: 605–608, 1983

    Google Scholar 

  12. Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN: Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221: 275–277, 1983

    Google Scholar 

  13. Lens PF, Altena B, Nusse R: Expression of c-sisand platelet-derived growth factor in In vitro transformed glioma cells from rat brain tissue transplacentally treated with ethylnitrosourea. Mol Cell Biol 6: 3537–3540, 1986

    Google Scholar 

  14. Nistér M, Libermann TA, Betsholtz C, Pettersson M, Claesson-Welsh L, Heldin CH, Schlessinger J, Westermark B: Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res 48: 3910–3918, 1988

    Google Scholar 

  15. Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA, Ali IU: Amplification and/or overexpression of platelet derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52: 4550–4553, 1992

    Google Scholar 

  16. Guha A: Platelet Derived Growth Factor: A General Review with Emphasis on Astrocytomas. Pediatric Neurosurgery 17: 14–20, 1992

    Google Scholar 

  17. Guha A, Dashner K, Black PM, Wagner JA, Stilles CD: Expression of PDGF and PDGF receptors in human astrocytoma operative specimens supports the existence of an autocrine loop. Int J Cancer 60: 168–173, 1995

    Google Scholar 

  18. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin C-H, Westermark B, Nister M: Platelet-derived growth factor and its receptors in human glioma tissue: Expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52: 3213–3219, 1992

    Google Scholar 

  19. Mercola M, Deininger PL, Shamah SM, Porter J, Wang CY, Stiles CD: Dominant-negative mutants of a platelet-derived growth factor gene. Genes Dev 4: 2333–2341, 1990

    Google Scholar 

  20. Shamah SM, Stiles CD, Guha A: Dominant-negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Mol Cell Biol 13: 7203–7212, 1993

    Google Scholar 

  21. Louis DN, Gusella JF: A tiger behind many doors: multiple genetic pathways to malignant glioma. Trends Genet 11: 412–415, 1995

    Google Scholar 

  22. Collins VP: Gene amplification in human gliomas. Glia 15: 289–296, 1995

    Google Scholar 

  23. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B: Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84: 6899–6903, 1987

    Google Scholar 

  24. Libermann TA, Razon N, Bantal AD, Yarden Y, Schlessinger J, Soreq H: Expression of epidermal growth factor receptors in human brain tumors. Cancer Res 44: 753–760, 1984

    Google Scholar 

  25. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield M, Ullrich A, Schlessinger J: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human tumors of glial origin. Nature 313: 144–147, 1985

    Google Scholar 

  26. Kondo I, Shimizu N: Mapping of the human gene for the epidermal growth factor receptor (EGFR) on the p13-q22 region on chromosome 7. Cytogenet Cell Genet 35: 9–14, 1983

    Google Scholar 

  27. Khazaie K, Schirrmacher V, Lichtner RB: EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev 12: 255–274, 1993

    Google Scholar 

  28. Parsons JT, Parsons SJ: Protein-tyrosine kinases, oncogenes, and cancer. In Devita Jr. VT, Hellman S, Rosenberg SA (eds) Important Advances in Oncology 1993, ed J. B. Lippincott Company, Philadelphia, 1993, pp 3–17

    Google Scholar 

  29. Northwood IC, Davis RJ: Activation of the epidermal growth factor receptor tyrosine protein kinase in the absense of receptor oligomerization. J Biol Chem 263: 7450–7453, 1988

    Google Scholar 

  30. Lemmon MA, Schlessinger J: Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem Sci 19: 459–463, 1994

    Google Scholar 

  31. Heldin C-H: Dimerization of cell surface receptors in signal transduction. Cell 80: 213–223, 1995

    Google Scholar 

  32. Soltoff SP, Carraway III KL, Prigent SA, Gullick WG, Cantley LC: ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol 14: 3550–3558, 1994

    Google Scholar 

  33. Murali R, Brennan PJ, Kieber-Emmons T, Greene MI: Structural analysis of p185c-neu and epidermal growth factor receptor tyrosine kinases: Oligomerization of kinase domains. Proc Natl Acad Sci USA 93: 6252–6257, 1996

    Google Scholar 

  34. Earp HS, Dawson TL, Li X, Yu H: Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer research. Breast Cancer Res Treat 35: 115–132, 1995

    Google Scholar 

  35. Chen WS, Lazar CS, Lund KA, Welsh JB, Chang C-P, Walton GM, Der CJ, Wiley HS, Gill GN, Rosenfeld MG: Functional independence of the epidermal growth factor receptor from a domain required for ligand-induced internalization and calcium regulation. Cell 59: 33–43, 1989

    Google Scholar 

  36. Murakami Y, Mizuno S, Uehara Y: Accelerated degradation of 160 kDa epidermal growth factor (EGF) receptor precursor by the tyrosine kinase inhibitor herbimycin A in the endoplasmic reticulum of A431 human epidermoid carcinoma cells. Biochem J 301: 63–68, 1994

    Google Scholar 

  37. Opresko LK, Chang C-P, Will BH, Burke PM, Gill GN, Wiley HS: Endocytosis and lysosomal targeting of epidermal growth factor receptors are mediated by distinct sequences independent of the tyrosine kinase domain. J Biol Chem 270: 4325–4333, 1995

    Google Scholar 

  38. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD: Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307: 521–527, 1984

    Google Scholar 

  39. Kris RM, Lax I, Gullick W, Waterfield MD, Ullrich A, Fridkin M, Schlessinger J: Antibodies against a synthetic peptide as a probe for the kinase activity of the avian EGF receptor and v-erbB protein. Cell 40: 619–625, 1985

    Google Scholar 

  40. Bargmann CI, Hung MC, Weinberg RA: The neuoncogene encodes an epidermal growth factor receptor-related protein. Nature 319: 226–230, 1986

    Google Scholar 

  41. Schwechheimer K, Laufle R, Schmahl W, Knodlseder M, Fischer H, Hofler H: Expression of neu/c-erbB-2 in human brain tumors. Hum Pathol 25: 772–780, 1994

    Google Scholar 

  42. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA: The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312: 513–516, 1984

    Google Scholar 

  43. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, Vogelstein B: Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89: 2965–2969, 1992

    Google Scholar 

  44. Steck PA, Lee P, Hung MC, Yung WK: Expression of an altered epidermal growth factor receptor by human glioblastoma cells. Cancer Res 48: 5433–5439, 1988

    Google Scholar 

  45. Ekstrand AJ, Longo N, Hamid ML, Olson JJ, Liu L, Collins VP, James CD: Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene 9: 2313–2320, 1994

    Google Scholar 

  46. Yamazaki H, Fukui Y, Ueyama Y, Tamaoki N, Kawamoto T, Taniguchi S, Shibuya M: Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol Cell Biol 8: 1816–1820, 1988

    Google Scholar 

  47. Nishikawa R, Ji X, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJ: A mutant epidermal growth factor receptor common in human gliomas confers enhanced tumorigenicity. Proc Natl Acad Sci USA 91: 7727–7731, 1994

    Google Scholar 

  48. Moscatello DK, Montgomery RB, Sundareshan P, Mc Danel H, Wong MY, Wong AJ: Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 13: 85–96, 1996

    Google Scholar 

  49. Ekstrand AJ, Liu L, He J, Hamid ML, Longo N, Collins VP, James CD: Altered subcellular location of an activated and tumour-associated epidermal growth factor receptor. Oncogene 10: 1455–1460, 1995

    Google Scholar 

  50. Prigent SA, Nagane M, Lin H, Huvar I, Boss GR, Feramisco JR, Cavenee WK, Huang HJS: Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-Shc-Grb2 pathway. J Biol Chem 271: 25639–25645, 1996

    Google Scholar 

  51. Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW, Biegel JA, Hayes RL, Wong AJ: Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55: 5536–5539, 1995

    Google Scholar 

  52. Garcia de Palazzo IE, Adams GP, Sundareshan P, Wong AJ, Testa JR, Bigner DD, Weiner LM: Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res 53: 3217–3220, 1993

    Google Scholar 

  53. Batzer AG, Rotin D, Urena JM, Skolnik EY, Schlessinger J: Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol Cell Biol 14: 5192–5202, 1994

    Google Scholar 

  54. Wahl MI, Jones GA, Nishibe S, Rhee SG, Carpenter G: Growth factor stimulation of phospholipase C-gamma 1 activity. Comparative properties of control and activated enzymes. J Biol Chem 267: 10447–10456, 1992

    Google Scholar 

  55. Feng G-S, Hui C-C, Pawson T: SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 259: 1607–1611, 1993

    Google Scholar 

  56. Duchesne M, Schweighoffer F, Parker F, Clerc F, Frobert Y, Thang MN, Tocque B: Identification of the SH3 domain of GAP as an essential sequence for Ras-GAP-mediated signaling. Science 259: 525–528, 1993

    Google Scholar 

  57. Moran MF, Koch CA, Anderson DA, Ellis C, England L, Martin GS, Pawson T: Src homology 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci USA 87: 8622–8626, 1990

    Google Scholar 

  58. Ellis C, Moran M, McCormick F, Pawson T: Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343: 377–381, 1990

    Google Scholar 

  59. Soler C, Felipe A, Carpenter G: Epidermal growth factor increases protein and messenger RNA expression levels of Ras GTPase activating protein. Cell Growth Differ 5: 519–526, 1994

    Google Scholar 

  60. Sadowski HB, Shuai K, Darnell Jr. JE, Gilman MZ: A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261: 1739–1744, 1993

    Google Scholar 

  61. Fu X-Y, Zhang J-J: Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos promoter. Cell 74: 1135–1145, 1993

    Google Scholar 

  62. Polk DB, McCollum GW, Carpenter G: Cell density-dependent regulation of PLC–gamma 1 tyrosine phosphorylation and catalytic activity in an intestinal cell line (IEC-6). J Cell Physiol 162: 427–433, 1995

    Google Scholar 

  63. Marshall CJ: Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185, 1995

    Google Scholar 

  64. Schlessinger J, Ullrich A: Growth factor signaling by receptor tyrosine kinases. Neuron 9: 383–391, 1992

    Google Scholar 

  65. Bowen S, Stanley K, Selva E, Davis RJ: Constitutive phosphorylation of the epidermal growth factor receptor blocks mitogenic signal transduction. J Biol Chem 266: 1162–1169, 1991

    Google Scholar 

  66. Mollenaar WH, Bierman AJ, Tilly BC, Verlaan I, Defize LHK, Honegger AM, Ullrich A, Schlessinger J: A point mutation at the ATP-binding site of the EGF-receptor abolishes signal transduction. EMBO J 7: 707–710, 1988

    Google Scholar 

  67. Harvey JJ: An unidentified virus which causes the rapid production of tumours in mice. Nature 204: 1104–1105, 1964

    Google Scholar 

  68. Kirsten WH, Mayer LA: Morphologic responses to a murine erythroblastosis virus. J Natl Cancer Inst 39: 311–335, 1967

    Google Scholar 

  69. Parada LF, Tabin CJ, Shih C, Weinberg RA: Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297: 474–478, 1982

    Google Scholar 

  70. Santos E, Tronick SR, Aaronson SA, Pulciani S, Barbacid M: T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB-and Harvey-MSV transforming genes. Nature 298: 343–347, 1982

    Google Scholar 

  71. Der CJ, Krontiris TG, Cooper GM: Transforming genes of human bladder and lung carcinoma cell lines are homologues to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79: 3637–3640, 1982

    Google Scholar 

  72. Bos JL: ras oncogenes in human cancers: a review. Cancer Res 49: 4682–4689, 1989

    Google Scholar 

  73. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S: Oncogenes and signal transduction. Cell 64: 281–302, 1991

    Google Scholar 

  74. McCormick F: Signal transduction. How receptors turn Ras on. Nature 363: 15–16, 1993

    Google Scholar 

  75. Smith MR, DeGudicibus SJ, Stacey DW: Requirement for c-ras proteins during viral oncogene transformation. Nature 320: 540–543, 1986

    Google Scholar 

  76. Barbacid M: ras genes. Annu Rev Biochem 56: 779–827, 1987

    Google Scholar 

  77. Tuzi NL, Uenter DJ, Kumar S, Staddon SL, Lemoine NR, Gullick WJ: Expression of growth factor receptors in human brain tumours. Br J Cancer 63: 227–233, 1991

    Google Scholar 

  78. Guha A, Feldkamp MM, Lau N, Boss G, Pawson T: Proliferation of human malignant astrocytomas is dependent on Ras activation. Submitted: 1996

  79. Pawson T, Gish GD: SH2 and SH3 domains: From structure to function. Cell 71: 359–362, 1992

    Google Scholar 

  80. Sadowski I, Stone JC, Pawson T: A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinase modifies the kinase function and transforming activity of Fujinami sarcoma virus. Mol Cell Biol 6: 4396–4408, 1986

    Google Scholar 

  81. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser W, King F, Roberts T, Ratnofsky S, Lechleider RJ, Neel BG, Birge RB, Fajardo J, Chou M, Hanafusa H, Schaffhausen B, Cantley L: SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778, 1993

    Google Scholar 

  82. Haslam RJ, Koide HB, Hemmings BA: Pleckstrin domain homology. Nature 363: 309–310, 1993

    Google Scholar 

  83. Mayer BJ, Ren R, Clark KL, Baltimore D: A putative modular domain present in diverse signaling proteins. Cell 73: 629–630, 1993

    Google Scholar 

  84. Kavanaugh WM, Turck CW, Williams LT: PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 268: 1177–1179, 1995

    Google Scholar 

  85. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D: The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363: 83–85, 1993

    Google Scholar 

  86. Pawson T: Protein modules and signalling networks. Nature 373: 573–580, 1995

    Google Scholar 

  87. Gawler DJ, Zhang LJ, Reedijk M, Tung PS, Moran MF: CaLB: a 43 amino acid calcium-dependent membrane/ phospholipid binding domain in p120 Ras GTPase-activating protein. Oncogene 10: 817–825, 1995

    Google Scholar 

  88. Farnsworth CL, Freshney NW, Rosen LB, Ghosh A, Greenberg ME, Feig LA: Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376: 524–527, 1995

    Google Scholar 

  89. Hart MJ, Eva A, Zangrilli D, Aaronson SA, Evans T, Cerione RA, Zheng Y: Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem 269: 62–65, 1994

    Google Scholar 

  90. Bollag G, McCormick F: Differential regulation of ras-GAP and neurofibromatosis gene product activities. Nature 351: 576–579, 1991

    Google Scholar 

  91. Downward J: Regulation of p21ras by GTPase activating proteins and guanine nucleotide exchange proteins. Curr Opin Genet Dev 2: 13–18, 1992

    Google Scholar 

  92. Downward J: Regulatory mechanisms for ras proteins. Bioessays 14: 177–184, 1992

    Google Scholar 

  93. McCormick F: Ras signaling and NF1. Curr Opin Genet Dev 5: 51–55, 1995

    Google Scholar 

  94. Xu GF, O’Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R, Weiss R: The neurofibromatosis type 1gene encodes a protein related to GAP. Cell 62: 599–608, 1990

    Google Scholar 

  95. Guha A, Lau N, Gutmann D, Provias J, Pawson T, Boss G: Ras-GTP levels are elevated in human NF1 peripheral nerve tumours. Oncogene 12: 507–513, 1996

    Google Scholar 

  96. Cullen PJ, Hsuan JJ, Truong O, Letcher AJ, Jackson TR, Dawson AP, Irvine RF: Identification of a specific Ins (1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 376: 527–530, 1995

    Google Scholar 

  97. Maekawa M, Li S, Iwamatsu A, Morishita T, Yokota K, Imai Y, Kohsaka S, Nakamura S, Hattori S: A novel mammalian Ras GTPase-activating protein which has phospholipid-binding and Btk homology regions. Mol Cell Biol14: 6879–6885, 1994

    Google Scholar 

  98. Ahmadian MR, Wiesmuller L, Lautwein A, Bischoff FR, Wittinghofer A: Structural differences in the minimal catalytic domains of the GTPase-activating proteins p120GAP and neurofibromin. J Biol Chem 271: 16409–16415, 1996

    Google Scholar 

  99. Cawthon RM, Anderson LB, Buchberg AM, Xu GF, O’Connell P, Viskochill D, Weiss RB, Wallace MR, Marchuk DA, Culver M: cDNA sequence and genomic structure of EV12B, a gene lying within an intron of the neurofibromatosis type 1 gene. Genomics 9: 446–460, 1991

    Google Scholar 

  100. Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver M, Carey JC, Copeland NG, Jenkins NA: Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1locus. Cell 62: 187–192, 1990

    Google Scholar 

  101. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A, Nicholson J, Mitchell AL: Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249: 181–186, 1990

    Google Scholar 

  102. Colman SD, Williams CA, Wallace MR: Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1gene. Nat Genet 11: 90–92, 1995

    Google Scholar 

  103. Xu W, Mulligan LM, Ponder MA, Liu L, Smith BA, Mathew CGP, Ponder BAJ: Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis. Genes Chromosomes Cancer 4: 337–342, 1992

    Google Scholar 

  104. Gutmann DH, Cole JL, Stone WJ, Ponder BAJ, Collins FS: Loss of neurofibromin in adrenal gland tumors from patients with neurofibromatosis type 1. Genes Chromosomes Cancer 10: 55–58, 1994

    Google Scholar 

  105. Sawada Si, Florell S, Purandare SM, Ota M, Stephens K, Viskochill D: Identification of NF1mutations in both alleles of a dermal neurofibroma. Nat Genet 14: 110–112, 1996

    Google Scholar 

  106. Shannon KM, O’Connell P, Martin GA, Paderanga D, Olson K, Dinndorf P, McCormick F: Loss of the normal NF1allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 330: 597–601, 1994

    Google Scholar 

  107. Feldkamp MM, Lau N, Provias JP, Guha A: Acute presentation of a neurogenic sarcoma in a patient with neurofibromatosis type 1: A pathologic and molecular explanation. J Neurosurg 84: 867–873, 1996

    Google Scholar 

  108. Takahashi K, Suzuki H, Hatori M, Abe Y, Kokubun S, Sakurai M, Shibahara S: Reduced expression of neurofibromin in the soft tissue tumours obtained from patients with neurofibromatosis type I. Clin Sci 88: 581–585, 1995

    Google Scholar 

  109. Legius E, Marchuk DA, Collins FS, Glover TW: Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet 3: 122–126, 1993

    Google Scholar 

  110. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J: The SH2 and SH3 domain-containing protein GRB2 links receptos tyrosine kinases to ras signaling. Cell 70: 431–442, 1992

    Google Scholar 

  111. Buday L, Downward J: Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73: 611–620, 1993

    Google Scholar 

  112. Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D: Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260: 1338–1343, 1993

    Google Scholar 

  113. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA: Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363: 45–51, 1993

    Google Scholar 

  114. Rozakis-Adcock M, McGlade J, Mbamalu G, Pelicci G, Daly R, Li W, Batzer A, Thomas S, Brugge J, Pelicci P, Schlessinger J, Pawson T: Association of the Shc and Grb2/ Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360: 689–692, 1992

    Google Scholar 

  115. Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T: A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73: 179–191, 1993

    Google Scholar 

  116. Li W, Nishimura R, Kashishian A, Batzer AG, Kim WJ, Cooper JA, Schlessinger J: A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol 14: 509–517, 1994

    Google Scholar 

  117. Hu Q, Klippel A, Muslin AJ, Fantl WJ, Williams LT: Rasdependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science 268: 100–102, 1995

    Google Scholar 

  118. Sun H, Tonks NK: The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci 19: 480–485, 1994

    Google Scholar 

  119. Feng G-S, Pawson T: Phosphotyrosine phosphatases with SH2 domains: regulators of signal transduction. Trends Genet 10: 54–58, 1994

    Google Scholar 

  120. Barnard D, Diaz B, Hettich L, Chuang E, Zhang XF, Avruch J, Marshall M: Identification of the sites of interaction between c-Raf-1 and Ras-GTP. Oncogene 10: 1283–1290, 1995

    Google Scholar 

  121. Dickson B, Sprenger F, Morrison D, Hafen E: Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360: 600–603, 1992

    Google Scholar 

  122. Moodie SA, Willumsen BM, Weber MJ, Wolfman A: Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260: 1658–1660, 1993

    Google Scholar 

  123. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF: Activation of raf as a result of recruitment to the plasma membrane. Science 264: 1463–1467, 1994

    Google Scholar 

  124. Luo Z, Tzivion G, Belshaw PJ, Vavvas D, Marshall M, Avruch J: Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383: 181–185, 1996

    Google Scholar 

  125. Farrar MA, Alberola-Ila J, Perlmutter RM: Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383: 178–181, 1996

    Google Scholar 

  126. Li S, Janosch P, Tanji M, Rosenfeld GC, Waymire JC, Mischak H, Kolch W, Sedivy JM: Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins. EMBO J 14: 685–696, 1995

    Google Scholar 

  127. Marshall CJ: Raf gets it together. Nature 383: 127–128, 1996

    Google Scholar 

  128. Lange-Carter CA, Johnson GL: Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science 265: 1458–1461, 1994

    Google Scholar 

  129. Howe LR, Leevers SJ, Gomez N, Nakielny S, Cohen P, Marshall CJ: Activation of the MAP kinase pathway by the protein kinase raf. Cell 71: 335–342, 1992

    Google Scholar 

  130. Macdonald SG, Crews CM, Wu L, Driller J, Clark R, Erikson RL, McCormick F: Reconstitution of the Raf-1-MEKERK signal transduction pathway in vitro. Mol Cell Biol 13: 6615–6620, 1993

    Google Scholar 

  131. Dent P, Haser W, Haystead TA, Vincent LA, Roberts TM, Sturgill TW: Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257: 1404–1407, 1992

    Google Scholar 

  132. Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp VR, Avruch J: Raf-1 activates MAP kinase-kinase. Nature 358: 417–421, 1992

    Google Scholar 

  133. Moodie SA, Wolfman A: The 3Rs of life: Ras, Raf and growth regulation. Trends Genet 10: 44–48, 1994

    Google Scholar 

  134. Gonzalez FA, Raden DL, Davis RJ: Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem 266: 22159–22163, 1991

    Google Scholar 

  135. Lenormand P, Sardet C, Pages G, L’Allemain G, Brunet A, Pouyssegur J: Growth factors induce nuclear translocation of MAP kinases (p42mapkand p44mapk) but not of their activator MAPK kinase kinase (p45mapkk) in fibroblasts. J Cell Biol 122: 1079–1088, 1993

    Google Scholar 

  136. Marais R, Wynne J, Treisman R: The SRF accessory protein Elk-1contains a growth factor-regulated transcriptional activation domain. Cell 73: 381–393, 1993

    Google Scholar 

  137. Hill CS, Marais R, John S, Wynne J, Dalton S, Treisman R: Functional analysis of a growth factor-responsive transcription factor complex. Cell 73: 395–406, 1993

    Google Scholar 

  138. Gille H, Kortenjahn M, Thomae O, Moomaw C, Slaughter C, Cobb MH, Shaw PE: ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14: 951–962, 1995

    Google Scholar 

  139. Chen RH, Sarnecki C, Blenis J: Nuclear localization and regulation of erk-and rsk-encoded protein kinases. Mol Cell Biol 12: 915–927, 1992

    Google Scholar 

  140. Hill CS, Wynne J, Treisman R: The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81: 1159–1170, 1995

    Google Scholar 

  141. Ginty DD, Bonni A, Greenberg ME: Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fostranscription via phosphorylation of CREB. Cell 77: 713–725, 1994

    Google Scholar 

  142. Gonzalez GA, Montminy MR: Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675–680, 1989

    Google Scholar 

  143. Xing J, Ginty DD, Greenberg ME: Coupling of the RASMAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273: 959–963, 1996

    Google Scholar 

  144. Chen RH, Chung J, Blenis J: Regulation of pp90RSK phosphorylation and S6 phosphotransferase activity in Swiss 3T3 cells by growth factor-, phorbol ester-, and cyclic AMP-mediated signal transduction. Mol Cell Biol 11: 1861–1867, 1991

    Google Scholar 

  145. Arias J, Alberts AS, Brindle P, Claret FX, Smeal T, Karin M, Feramisco J, Montminy M: Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370: 226–229, 1994

    Google Scholar 

  146. Nakajima T, Fukamizu A, Takahashi J, Gage FH, Fisher T, Blenis J, Montminy MR: The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell 86: 465–474, 1996

    Google Scholar 

  147. Ryseck RP, Hirai SI, Yaniv M, Bravo R: Transcriptional activation of c-jun during G0/G1 transition in mouse fibroblasts. Nature 334: 535–537, 1988

    Google Scholar 

  148. Lamph WW, Wamsley P, Sassone-Corsi P, Verma IM: Induction of proto-oncogene jun/AP-1 by serum and TPA. Nature 334: 629–631, 1988

    Google Scholar 

  149. Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ, Johnson GL, Karin M: Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266: 1719–1723, 1994

    Google Scholar 

  150. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ: JNK1: a protein kinase stimulated by UV light and Ha-ras that binds and phosphorylates the c-jun activation domain. Cell 76: 1025–1037, 1994

    Google Scholar 

  151. Denton RM, Tavare JM: Does mitogen-activated-protein kinase have a role in insulin action? The case for and against. Eur J Biochem 227: 597–611, 1995

    Google Scholar 

  152. Rozakis-Adcock M, van der Geer P, Mbamalu G, Pawson T: MAP kinase phosphorylation of mSos1 promotes dissociation of mSos1-Shc and mSos1-EGF receptor complexes. Oncogene 11: 1417–1426, 1995

    Google Scholar 

  153. Chen D, Waters SB, Holt KH, Pessin JE: SOS phosphorylation and dissociation of the Grb2-SOS complex by the ERK and JNK signaling pathways. J Biol Chem 271: 6328–6332, 1996

    Google Scholar 

  154. Minshull J, Sun H, Tonks NK, Murray AW: A MAP kinasedependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79: 475–486, 1994

    Google Scholar 

  155. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J: Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–532, 1994

    Google Scholar 

  156. Hofer F, Fields S, Schneider C, Martin GS: Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc Natl Acad Sci USA 91: 11089–11093, 1994

    Google Scholar 

  157. White MA, Vale T, Camonis JH, Schaefer E, Wigler MH: A role for the Ras guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem 271: 16439–16442, 1996

    Google Scholar 

  158. Miao W, Eichelberger L, Baker L, Marshall MS: p120 Ras GTPase-activating protein interacts with Ras-GTP through specific conserved residues. J Biol Chem 271: 15322–15329, 1996

    Google Scholar 

  159. Diaz-Meco MT, Lozano J, Municio MM, Berra E, Frutos S, Sanz L, Moscat J: Evidence for the in vitroand in vivointeraction of Ras with protein kinase C zeta. J Biol Chem 269: 31706–31710, 1994

    Google Scholar 

  160. Prendergast GC, Gibbs JB: Pathways of Ras function: connections to the actin cytoskeleton. Adv Cancer Res 62: 19–64, 1993

    Google Scholar 

  161. Ridley AJ, Paterson HF, Johnston CL, Dickmann D, Hall A: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401–410, 1992

    Google Scholar 

  162. Joneson T, White MA, Wigler MH, Bar-Sagi D: Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of Ras. Science 271: 810–812, 1996

    Google Scholar 

  163. Nobes CD, Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipoda, and filopodia. Cell 81: 53–62, 1995

    Google Scholar 

  164. Prendergast GC, Khosravi-Far R, Solski PA, Kurzawa H, Lebowitz PF, Der CJ: Critical role of Rho in cell transformation by oncogenic Ras. Oncogene 10: 2289–2296, 1995

    Google Scholar 

  165. Qiu RG, Chen J, Kirn D, McCormick F, Symons M: An essential role for rac in ras transformation. Nature 374: 457–459, 1995

    Google Scholar 

  166. Duronio V, Welham MJ, Abraham S, Dryden P, Schrader JW: p21ras activation via hemopoietin receptors and c-kit requires tyrosine kinase activity but not tyrosine phsophorylation of p21ras GTPase-activating protein. Proc Natl Acad Sci USA 89: 1587–1591, 1992

    Google Scholar 

  167. Serve H, Yee NS, Stella G, Sepp-Lorenzino L, Tan JC, Besmer P: Differential roles of PI3-kinase and Kit tyrosine 821 in Kit receptor-mediated proliferation, survival and cell adhesion in mast cells. EMBO J 14: 473–483, 1995

    Google Scholar 

  168. Feig LA, Cooper GM: Inhibition of NIH 3T3 cell proliferation by a mutant rasprotein with preferential affinity for GDP. Mol Cell Biol 8: 3235–3243, 1988

    Google Scholar 

  169. Jung V, Wei W, Ballester R, Camonis J, Mi S, Van Aelst L, Wigler M, Broek D: Two types of RAS mutants that dominantly interfere with activators of RAS. Mol Cell Biol 14: 3707–3718, 1994

    Google Scholar 

  170. Blumberg PM: Complexities of the protein kinase C pathway. Mol Carcinog 4: 339–344, 1991

    Google Scholar 

  171. Ashendel C: The phorbol ester receptor: A phospholipidregulated protein kinase. Biochim Biophys Acta 822: 219–242, 1985

    Google Scholar 

  172. Nishizuka Y: Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–614, 1992

    Google Scholar 

  173. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR: Protein Kinase C–alpha activates RAF-1 by direct phosphorylation. Nature 364: 249–252, 1993

    Google Scholar 

  174. Chen P, Xie H, Sekar MC, Gupta KB, Wells A: Epidermal growth factor receptor-mediated cell motility: phospholipase C activity is required, but mitogen-activated protein kinase activity is not sufficient for induced cell movement. J Cell Biol 127: 847–857, 1994

    Google Scholar 

  175. Uhm JH, Dooley NP, Villemure JG, Yong VW: Mechanisms of glioma invasion: role of matrix-metalloproteinases. In press: 1996

  176. Clark EA, Leach KL, Trojanowski JQ, Lee VM-Y: Characterization and differential distribution of the three major human protein kinase C isozymes (PKC alpha, PKC beta, PKC gamma) of the central nervous system and Alzheimer’s disease brain. Lab Invest 64: 35–44, 1991

    Google Scholar 

  177. Ito A, Saito N, Hirata M, Kose A, Tsujino T, Yoshihara C, Ogita K, Kishimoto A, Nishizuka Y, Tanaka C: Immunocytochemical localization of the alpha subspecies of protein kinase C in rat brain. Proc Natl Acad Sci USA 87: 3195–3199, 1990

    Google Scholar 

  178. Honegger P: Protein kinase C-activating tumor promoters enhance the differentiation of astrocytes in aggregrating fetal brain cell cultures. J Neurochem 46: 1561–1566, 1986

    Google Scholar 

  179. Bhat NR: Role of protein kinase C in glial cell proliferation. J Neurosci Res 22: 20–27, 1989

    Google Scholar 

  180. Couldwell WT, Uhm JH, Antel JP, Yong VW: Enhanced protein kinase C activity correlates with the growth rate of malignant gliomas in vitro. Neurosurgery 29: 880–887, 1991

    Google Scholar 

  181. Couldwell WT, Antel JP, Yong VW: Protein kinase C activity correlates with the growth rate of malignant gliomas: Part II. Effects of glioma mitogens and modulators of protein kinase C. Neurosurgery 31: 717–724, 1992

    Google Scholar 

  182. Misra-Press A, Fields AP, Samols D, Goldthwait DA: Protein kinase C isoforms in human glioblastoma cells. Glia 6: 188–197, 1992

    Google Scholar 

  183. Ahmad S, Mineta T, Martuza RL, Glazer RI: Antisense expression of protein kinase C–alpha inhibits the growth and tumorigenecity of human glioblastoma cells. Neurosurgery 35: 904–909, 1994

    Google Scholar 

  184. Xiao H, Goldthwait DA, Mapstone T: The identification of four protein kinase C isoforms in human glioblastoma cell lines: PKC alpha, gamma, epsilon, and zeta. J Neurosurgery 81: 734–740, 1994

    Google Scholar 

  185. Benzil DL, Finkelstein SD, Epstein MH, Finch PW: Expression pattern of alpha-protein kinase C in human astrocytomas indicates a role in malignant progression. Cancer Res 52: 2951–2956, 1992

    Google Scholar 

  186. Welsh JB, Gill GN, Rosenfeld MG, Wells A: A negative feedback loop attenuates EGF-induced morphological changes. J Cell Biol 114: 533–543, 1991

    Google Scholar 

  187. Chen P, Xie H, Wells A: Mitogenic signaling from the EGF receptor is attenuated by a phospholipase c-gamma/protein kinase C feedback mechanism. Mol Biol Cell 7: 871–881, 1996

    Google Scholar 

  188. Levitzki A, Gazit A: Tyrosine kinase inhibition: An approach to drug development. Science 267: 1782–1788, 1995

    Google Scholar 

  189. Jannot CB, Beerli RR, Mason S, Gullick WJ, Hynes NE: Intracellular expression of a single-chain antibody directed to the EGFR leads to growth inhibition of tumor cells. Oncogene 13: 275–282, 1996

    Google Scholar 

  190. De Giovanni C, Landuzzi L, Frabetti F, Nicoletti G, Griffoni C, Rossi I, Mazzotti M, Scotto L, Nanni P, Lollini PL: Antisense epidermal growth factor receptor transfection impairs the proliferative ability of human rhabdomyosarcoma cells. Cancer Res 56: 3898–3901, 1996

    Google Scholar 

  191. Reist CJ, Archer GE, Kurpad SN, Wikstrand CJ, Vaidyanathan G, Willingham MC, Moscatello DK, Wong AJ, Bigner DD, Zalutsky MR: Tumor-specific anti-epidermal growth factor variant III monoclonal antibodies: use of the tyramine-cellobiose radioiodination method enhances cellular retention and uptake in tumor xenografts. Cancer Res 55: 4375–4382, 1995

    Google Scholar 

  192. Graziani Y, Chayoth R, Karny N, Feldman B, Levy J: Regulation of protein kinases activity by quercetin in Ehrlich ascites tumor cells. Biochim Biophys Acta 714: 415–421, 1982

    Google Scholar 

  193. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y: Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262: 5592–5595, 1987

    Google Scholar 

  194. Umezawa H, Imoto M, Sawa T, Isshiki K, Matsuda N, Uchida T, Iinuma H, Hamada M, Takeuchi T: Studies on a new epidermal growth factor receptor kinase inhibitor, erbstatin, produced by MH435-hF3. J Antibiot 39: 170–173, 1986

    Google Scholar 

  195. Murakami Y, Mizuno S, Hori M, Uehara Y: Reversal of transformed phenotypes by herbimycin A in src oncogene expressed rat fibroblasts. Cancer Res 48: 1587–1590, 1988

    Google Scholar 

  196. Onoda T, Isshiki K, Takeuchi T, Tatsuta K, Umezawa K: Inhibition of tyrosine kinase and epidermal growth factor receptor internalization by lavendustin A methyl ester in cultured A431 cells. Drugs Exp Clin Res 16: 249–253, 1990

    Google Scholar 

  197. Fry DW, Kraker AJ, McMichael A, Ambroso L, Nelson JM, Leopold WR, Connors RW, Bridges AJ: A specific inhibitor of the epidermal growth factor tyrosine kinase. Science 265: 1093–1095, 1994

    Google Scholar 

  198. Buchdunger E, Trinks U, Mett H, regenass U, Muller M, Meyer T, McGlynn E, Pinna LA, Traxler P, Lydon NB: 4,5-dianilinophthalimide: a protein-tyrosine kinase inhibitor with selectivity for the epidermal growth factor receptor signal transduction pathway and potent in vivo antitumor activity. Proc Natl Acad Sci USA 91: 2334–2338, 1994

    Google Scholar 

  199. Sawutz DG, Bode DC, Briggs GM, Reid JR, Canniff P, Caldwell L, Faltynek CR, Miller D, Dunn JA, de Garavilla L, Guiles JW, Weigelt C, Michne W, Treasurywala AM, Silver PJ: In vitro characteristics of a novel series of platelet-derived growth factor receptor tyrosine kinase inhibitors. Biochem Pharm 51: 1631–1638, 1996

    Google Scholar 

  200. Traxler PM, Furet P, Mett H, Buchdunger E, Meyer T, Lydon N: 4-(phenylamino)pyrrolopyrimidines: potent and selective, ATP site directed inhibitors of the EGF-receptor protein tyrosine kinase. J Med Chem 39: 2285–2292, 1996

    Google Scholar 

  201. Posner I, Engel M, Gazit A, Levitzki A: Kinetics of inhibition by tyrphostins of the tyrosine kinase activity of the epidermal growth factor receptor and analysis by a new computer program. Mol Pharmacol 45: 673–683, 1994

    Google Scholar 

  202. Miyaji K, Tani E, Shindo H, Nakano A, Tokunaga T: Effect of tyrphostin on cell growth and tyrosine kinase activity of epidermal growth factor receptor in human gliomas. J Neurosurg 81: 411–419, 1994

    Google Scholar 

  203. Han Y, Caday CG, Nanda A, Cavenee WK, Huang HJS: Tyrphostin AG 1478 preferentially inhibits human glioma cells expressing truncated rather than wild-type epidermal growth factor receptors. Cancer Res 56: 3859–3861, 1996

    Google Scholar 

  204. Hook KE, Kunkel MW, Elliott WL, Howard CT, Leopold WR: Epidermal growth factor receptor tyrosine kinase in A431 xenografts: inhibition by PD 153035 (3-(3-bromoanilino)-6,7-dimethoxyquinazoline). Proc Am Assoc Cancer Res 36: 434, 1995 [Abstract]

    Google Scholar 

  205. Mason W, Malkin M, Lieberman F, Cropp G, Hannah A: Pharmacokinetics of SU101, a novel signal transduction inhibitor, in patients with recurrent malignant glioma. Proc Am Assoc Cancer Res 37: 166, 1996 [Abstract]

    Google Scholar 

  206. Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A, Gibbs JB: Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 260: 1934–1937, 1993

    Google Scholar 

  207. Seabra MC, Reiss Y, Casey PJ, Brown MS, Goldstein JL: Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell 65: 429–434, 1991

    Google Scholar 

  208. Glomset JA, Gelb MH, Farnsworth CC: Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci 15: 139–142, 1990

    Google Scholar 

  209. DeClue JE, Vass WC, Papageorge AG, Lowy DR, Willumsen BM: Inhibition of cell growth by lovastatin is independent of ras function. Cancer Res 51: 712–717, 1991

    Google Scholar 

  210. Defeo-Jones D, McAvoy EM, Jones RE, Vuocolo GA, Haskell KM, Wegrzyn RJ, Oliff A: Lovastatin selectively inhibits ras activation of the 12-O-tetradecanoylphorbol-13-acetate response element in mammalian cells. Mol Cell Biol 11: 2307–2310, 1991

    Google Scholar 

  211. Hancock JF, Magee AI, Childs JE, Marshall CJ: All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57: 1167–1177, 1989

    Google Scholar 

  212. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ: Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 89: 6403–6407, 1992

    Google Scholar 

  213. Hancock JF, Paterson H, Marshall CJ: A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63: 133–139, 1990

    Google Scholar 

  214. Magee AI, Gutierrez L, McKay IA, Marshall CJ, Hall A: Dynamic fatty acylation of p21N-ras. EMBO J 6: 3353–3357, 1987

    Google Scholar 

  215. Lerner EC, Qian Y, Blaskovich MA, Fossum RD, Vogt A, Sun J, Cox AD, Der CJ, Hamilton AD, Sebti SM: Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes. J Biol Chem 270: 26802–26806, 1995

    Google Scholar 

  216. Miyake M, Mizutani S, Koide H, Kaziro Y: Unfarnesylated transforming Ras mutant inhibits the Ras-signaling pathway by forming a stable Ras.Raf complex in the cytosol. FEBS Lett 378: 15–18, 1996

    Google Scholar 

  217. Lebowitz PF, Davide JP, Prendergast GC: Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol Cell Biol 15: 6613–6622, 1995

    Google Scholar 

  218. Gibbs JB, Pompliano DL, Mosser SD, Rands E, Lingham RB, Singh SB, Scolnick EM, Kohl NE, Oliff A: Selective inhibition of farnesyl-protein transferase blocks Ras processing in vivo. J Biol Chem 268: 7617–7620, 1993

    Google Scholar 

  219. Gibbs JB, Oliff A, Kohl NE: Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 77: 175–178, 1994

    Google Scholar 

  220. Kohl NE, Wilson FR, Mosser SD, Giuliani E, deSolms SJ, Conner MW, Anthony NJ, Holtz WJ, Gomez RP, Lee T-J, Smith RL, Graham SL, Hartman GD, Gibbs JB, Oliff A: Protein farnesyltrasferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc Natl Acad Sci USA 91: 9141–9145, 1994

    Google Scholar 

  221. James GL, Goldstein JL, Brown MS, Rawson TE, Somers TC, McDowell RS, Crowley CW, Lucas BK, Levinson AD, Marsters Jr. JC: Benzodiazepine Peptidomimetics: Potent inhibitors of ras farnesylation in animal cells. Science 260: 1937–1942, 1993

    Google Scholar 

  222. Manne V, Yan N, Carboni JM, Tuomari AV, Ricca CS, Brown JG, Andahazy ML, Schmidt RJ, Patel D, Zahler R, Weinmann R, Der CJ, Cox AD, Hunt JT, Gordon EM, Barbacid M, Seizinger BR: Bisubstrate inhibitors of farnesyltransferase: a novel class of specific inhibitors of ras transformed cells. Oncogene 10: 1763–1779, 1995

    Google Scholar 

  223. Marshall CJ: Protein prenylation: a mediator of proteinprotein interactions. Science 259: 1865–1866, 1993

    Google Scholar 

  224. Moores SL, Schaber MD, Mosser SD, Rands E, O’Hara MB, Garsky VM, Marshall MS, Pompliano DL, Gibbs JB: Sequence dependence of protein isoprenylation. J Biol Chem 266: 14603–14610, 1991

    Google Scholar 

  225. Farrell FX, Yamamoto K, Lapetina EG: Prenyl group identification of rap2 proteins: a ras superfamily member other than ras that is farnesylated. Biochem J 289: 349–355, 1993

    Google Scholar 

  226. Yan N, Ricca C, Fletcher J, Glover T, Seizinger BR, Manne V: Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1) malignant phenotype. Cancer Res 55: 3569–3575, 1995

    Google Scholar 

  227. James G, Goldstein JL, Brown MS: Resistance of K-RasBV12 proteins to farnesyltransferase inhibitors in Rat1 cells. Proc Natl Acad Sci USA 93: 4454–4458, 1996

    Google Scholar 

  228. Nagasu T, Yoshimatsu K, Rowell C, Lewis MD, Garcia AM: Inhibition of human xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res 55: 5310–5314, 1995

    Google Scholar 

  229. Lerner EC, Qian Y, Hamilton AD, Sebti SM: Disruption of oncogenic K-Ras4B processing and signaling by a potent geranylgeranyltransferase I inhibitor. J Biol Chem 270: 26770–26773, 1995

    Google Scholar 

  230. Yokoyama K, Goodwin GW, Ghomashchi F, Glomset JA, Gelb MH: A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci USA 88: 5302–5306, 1991

    Google Scholar 

  231. Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL: Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase. Proc Natl Acad Sci USA 88: 732–736, 1991

    Google Scholar 

  232. Khosravi-Far R, Clark GJ, Abe K, Cox AD, McLain T, Lutz RJ, Sinensky M, Der CJ: Ras (CXXX) and Rab (CC/ CXC) prenylation signal sequences are unique and functionally distinct. J Biol Chem 267: 24363–24368, 1992

    Google Scholar 

  233. Seabra MC, Goldstein JL, Sudhof TC, Brown MS: Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-XCys or Cys-Cys. J Biol Chem 267: 14497–14503, 1992

    Google Scholar 

  234. Pai JJ, Bishop WR, Catino J, Kirschmeier P, Whyte D: Characterization of prenyl groups attached to K-Ras in DLD-1 human colon carcinoma cells treated with the FPT inhibitor SCH 44342. Proc Amer Assoc Cancer Res 37: 503, 1996

    Google Scholar 

  235. Prendergast GC, Davide JP, Lebowitz PF, Wechsler-Reya R, Kohl NE: Resistance of a variant ras-transformed cell line to phenotypic reversion by farnesyl transferase inhibitors. Cancer Res 56: 2626–2632, 1996

    Google Scholar 

  236. Sepp-Lorenzino L, Ma Z, Rands E, Kohl NE, Gibbs JB, Oliff A, Rosen N: A peptidomimetic inhibitor of farnesyl: protein transferase blocks the anchorage-dependent and-independent growth of human tumor cell lines. Cancer Res 55: 5302–5309, 1995

    Google Scholar 

  237. Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ, Giuliani E, Gomez RP, Graham SL, Hamilton K, Handt LK, Hartman GD, Koblan KS, Kral AM, Miller PJ, Mosser SD, Oneal TJ, Randes E, Schaber MD, Gibbs JB, Oliff A: Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1: 792–797, 1995

    Google Scholar 

  238. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR: PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitroand in vivo. J Biol Chem 270: 27489–27494, 1995

    Google Scholar 

  239. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR: A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92: 7686–7689, 1995

    Google Scholar 

  240. Vertosick Jr FT, Selker RG, Pollack IF, Arena V: The treatment of intracranial malignant gliomas using orally administered tamoxifen therapy: preliminary results in a series of “failed” patients. Neurosurgery 30: 897–903, 1992

    Google Scholar 

  241. Pollack IF, Randall MS, Kristofik MP, Kelly RH, Selker RG, Vertosick Jr FT: Response of malignant glioma cell lines to activation and inhibition of protein kinase C-mediated pathways. J Neurosurg 73: 98–105, 1990

    Google Scholar 

  242. Pollack IF, Randall MS, Kristofik MP, Kelly RH, Selker R, Vertosick Jr FT: Effect of tamoxifen on DNA synthesis and proliferation of human malignant glioma lines in vitro. Cancer Res 50: 7134–7138, 1990

    Google Scholar 

  243. Baltuch GH, Couldwell WT, Villemure J-G, Yong VW: Protein kinase C inhibitors suppress cell growth in established and low-passage glioma cell lines. A comparison between staurosporine and tamoxifen. Neurosurgery 33: 495–501, 1993

    Google Scholar 

  244. Couldwell WT, Weiss MH, DeGiorgio CM, Weiner LP, Hinton DR, Ehresmann GR, Conti PS, Apuzzo MLJ: Clinical and radiographic response in a minority of patients with recurrent malignant gliomas treated with high dose tamoxifen. Neurosurgery 32: 485–490, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldkamp, M.M., Lau, N. & Guha, A. Signal transduction pathways and their relevance in human astrocytomas. J Neurooncol 35, 223–248 (1997). https://doi.org/10.1023/A:1005800114912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005800114912

Navigation