Skip to main content
Log in

Cardiac glycosides inhibit detubulation in amphibian skeletal muscle fibres exposed to osmotic shock

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

It has recently been suggested that the ‘vacuolation’ of the transverse tubular system that follows the imposition of an osmotic shock is a component process in the eventual ‘detubulation’ of amphibian skeletal muscle. However, such a hypothesis requires net fluid transfers from the intracellular space into the lumina of the transverse tubules against the prevailing transmembrane osmotic gradients. The present experiments tested the effects of cardiac glycosides on the consequences of established osmotic protocols known reliably to achieve high levels of both detubulation and vacuolation in Rana temporaria sartorius muscle. Tubular isolation (detubulation) was assessed through electrophysiological observations of the abolition or otherwise of the after-depolarisation components of muscle action potentials. Vacuolation was assessed by stereological estimation of the volume fraction of muscle that was occupied by fluorescence-labelled vacuoles observed using confocal microscopy. Introduction of ouabain in the osmotic shock solutions sharply reduced such measures of vacuolation from 48.5±3.6% (mean±SEM; n=70) to 12.1±2.7% (n=190) of the total fibre volume. This was accompanied by sharp reductions in the incidence of detubulation (detubulation index reduced from 96.3±2.6% to 0.0±0.0%). The presence of ouabain was critical at the osmotic shock stage in the procedures at which the hypertonic glycerol- containing solutions were replaced by isotonic Ca2+–Mg2+-Ringer solutions. Finally, the alternative cardiac glycosides, strophanthidine and digoxin, exerted similar effects. These findings support a scheme in which the osmotic shock initiates a metabolically dependent fluid expulsion. This distends the transverse tubules into vacuoles that in turn lead to fibre detubulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADRIAN, R. H. (1956) The effect of internal and external potassium concentration on the membrane potential of frog muscle. Journal of Physiology 133, 631-158.

    Google Scholar 

  • ADRIAN, R. H. & PEACHEY, L. D. (1973) Reconstruction of the action potential of frog sartorius muscle. Journal of Physiology 235, 103-131.

    Google Scholar 

  • ALBUQUERQUE, E. X. & WARNICK, J. E. (1971) Electrophysiological observations in normal and dystrophic chicken muscles. Science 172, 1260-1262.

    Google Scholar 

  • CAPUTO, C. (1968) Volume and twitch tension changes in single muscle fibres in hypertonic solutions. Journal of General Physiology 52, 793-809.

    Google Scholar 

  • DULHUNTY, A. F. & GAGE, P. W. (1973) Differential effects of glycerol treatment on membrane capacity and excitation contraction coupling in skeletal muscle. Journal of Physiology 234, 373-408.

    Google Scholar 

  • ENDO, M. (1966) Entry of fluorescent dyes into the sarcotubular system of the frog muscle. Journal of Physiology 185, 224-38.

    Google Scholar 

  • EISENBERG, R. S., HOWELL, J. N. & VAUGHAN, P. C. (1971) The maintenance of resting potentials in glycerol-treated muscle fibres. Journal of Physiology 215, 95-102.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C., HEUSER, J. E., REESE, T. S. SOMLYO, A. P. & SOMLYO, A. V. (1978) T-tubule swelling in hypertonic solutions: a freeze substitution study. Journal of Physiology 283, 133-140.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C., VENOSA, R. A. & HOROWICZ, P. (1973) Morphology and accessibility of the `transverse' tubular system in frog sartorius muscle after glycerol treatment. Journal of Membrane Biology 14, 197-212.

    Google Scholar 

  • FRASER, J. A., SKEPPER, J. N., HOCKADAY, A. R. & HUANG, C. L.-H. (1998) The tubular vacuolation process in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility 19, 613-629.

    Google Scholar 

  • GAGE, P. W. & EISENBERG, R. S. (1969a) Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibres. Journal of General Physiology 53, 265-278.

    Google Scholar 

  • GAGE, P. W. & EISENBERG, R. S. (1969b) Action potentials, afterpotentials and excitation-contraction coupling in frog sartorius fibers without transverse tubules. Journal of General Physiology 53, 298-310.

    Google Scholar 

  • GALLAGHER, F. A. & HUANG, C. L-H. (1997) Osmotic detubulation in frog muscle arises from a reversible vacuolation process. Journal of Muscle Research and Cell Motility 18, 305-322.

    Google Scholar 

  • GONZALEZ-SERRATOS, H., SOMLYO, A. V., MCCLELLAN, G., SHUMAN, H., BORRERO, L. M. & SOMLYO, A. P. (1978) Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: electron probe analysis. Proc. Nat. Acad. of Sci. USA 75, 1329-1333.

    Google Scholar 

  • HOFFMANN, E. K. & SIMONSEN, L. O. (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiological Reviews 69, 315-382.

    Google Scholar 

  • HOWELL, J. N. (1969) A lesion of the transverse tubules of skeletal muscle. Journal of Physiology 201, 515-533.

    Google Scholar 

  • HOWELL, J. N. & JENDEN, D. J. (1967) T-tubules of skeletal muscle: morphological alterations which interrupt excitation-contraction coupling. Federation Proceedings 26, 553.

    Google Scholar 

  • HUANG, C. L-H. & PEACHEY, L. D. (1989) Anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibres. Journal of General Physiology 93, 565-584.

    Google Scholar 

  • KOUTSIS, G., PHILIPPIDES, A. & HUANG, C. L-H. (1995) The after-depolarisation in Rana temporaria muscle fi-bres following osmotic shock. Journal of Muscle Research and Cell Motility 16, 519-528.

    Google Scholar 

  • KROLENKO, S. A. (1969) Changes in the T-system of muscle fibres under the influence of influx and efflux of glycerol. Nature 221, 966-968.

    Google Scholar 

  • KROLENKO, S. A. (1971) Effect of fluxes of sugars and mineral ions on the light microscopic structure of frog fast muscle fibres. Nature 229, 424-426.

    Google Scholar 

  • KROLENKO, S. A. & ADAMYAN, S. Y. (1996) Effects of membrane transport inhibitors on skeletal muscle vacuolation due to glycerol withdrawal. Tsitologija 38, 751-757.

    Google Scholar 

  • KROLENKO, S. A., ADAMYAN, S. Y. & LUCY, J. A. (1997) Functional role of vacuolation in the T-system of skeletal muscle. Tsitologija 39, 878-888.

    Google Scholar 

  • KROLENKO, S. A., AMOS, W. B. & LUCY, J. A. (1995) Reversible vacuolation of the transverse tubules of frog skeletal muscle: a confocal fluorescence microscopy study. Journal of Muscle Research and Cell Motility 16, 401-411.

    Google Scholar 

  • LANG, F., BUSCH, G. L., RITTER, M., VOLKL, H., WALDEGGER, S., GULBINS, E. & HAUSSINGER, D.(1998) Functional significance of cell volume regulatory mechanisms. Physiological Reviews 78, 247-306.

    Google Scholar 

  • LIBELIUS, R., JIRMANOVA, I., LUNDQUIST, I., THESLEFF, S. & BARNARD, E. A. (1979) T-tubule endocytosis in dystrophic chicken muscle and its relation to muscle fiber degeneration. Acta Neuropathologica 48, 31-38.

    Google Scholar 

  • MALOUF, N. N. & SOMMER, J. R. (1976) Chicken Dystrophy: The geometry of the Transverse Tubules. American Journal of Pathology 84, 299-307.

    Google Scholar 

  • NAKAJIMA, S., NAKAJIMA, Y. & PEACHEY, L. D. (1973) Speed of repolarization and morphology of glyceroltreated frog muscle fibres. Journal of Physiology 234, 465-480.

    Google Scholar 

  • PADMANABHAN, N. & HUANG, C. L-H. (1990) Separation of tubular electrical activity in amphibian skeletal muscle through temperature change. Experimental Physiology 75, 721-724.

    Google Scholar 

  • SELDIN, D. W. & GIEBISCH, G. (Eds.) (1990) The Regulation of Sodium and Chloride Balance, England, Raven Press.

    Google Scholar 

  • SKOU, J. C. & ESMANN, M. (1992) The Na, K-ATPase. J. Bioenerg. Biomembr. 24, 249-261.

    Google Scholar 

  • VANDENBERG, J. I., REES, S. A., WRIGHT, A. R. & POWELL, T. (1996) Cell swelling and ion transport pathways in cardiac myocytes. Cardiovascular Research 32, 85-97.

    Google Scholar 

  • VENOSA, R. A. (1991) Hypo-osmotic stimulation of active Na+ transport in frog muscle: Apparent upregulation of Na+ pumps. Journal of Membrane Biology 120, 97-104.

    Google Scholar 

  • WEIBEL, E. R. (1979) Stereological Methods.: London: Academic Press.

    Google Scholar 

  • ZACHAR, J., ZACHAROVA, D. & ADRIAN, R. H. (1972) Observations on `detubulated' muscle fibres. Nature New Biology 239, 153-55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nik-Zainal, S., Skepper, J.N., Hockaday, A. et al. Cardiac glycosides inhibit detubulation in amphibian skeletal muscle fibres exposed to osmotic shock. J Muscle Res Cell Motil 20, 45–53 (1999). https://doi.org/10.1023/A:1005494114976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005494114976

Keywords

Navigation