Skip to main content
Log in

Expression of chicken gizzard RLC complements the cytokinesis and developmental defects of Dictyostelium RLC null cells

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Dictyostelium RLC null cells have defects in cytokinesis and development that can be rescued by expression of either the wild type Dictyostelium RLC or an RLC mutant that cannot be phosphorylated by MLCK (S13A) (Ostrow et al., 1994). The wild type and S13A mutant LCs rescued the cells equally well, despite the fact that RLC phosphorylation increases purified Dictyostelium myosin's activity 5-fold. In this report, we assess the ability of foreign RLCs to rescue the RLC null phenotype. The RLC from smooth muscle myosin, whose activity is tightly controlled by phosphorylation, rescued the null cell phenotype. The purified hybrid myosin had an activity and motility comparable to phosphorylated Dictyostelium myosin. In contrast, cells expressing skeletal muscle RLC were deficient in cytokinesis and development, despite having an activity and motility similar to that of myosin with the unphosphorylatable S13A mutant RLC. Neither foreign LC was phosphorylated when expressed in Dictyostelium. These results suggest that the level of actin-activated ATPase activity and motility is not the sole determinant of proper myosin function in vivo. Other heavy chain/light chain interactions, which occur only with the native RLC and smooth muscle RLC, appear to be necessary for optimal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berlot, C. H., Spudich, J. A. & Devreotes, P. N. (1985) Chemoattractant-elicited increases in myosin phosphorylation in Dictyostelium. Cell 43, 307-14.

    PubMed  Google Scholar 

  • Chen, P., Ostrow, B., Tafuri, S. & Chisholm, R. L. (1994) Targeted disruption of the Dictyostelium RMLC gene produces cells defective in cytokinesis and development. J. Cell Biol. 127, 1933-44.

    PubMed  Google Scholar 

  • Chisholm, R. L., Fontana, D., Theibert, A., Lodish, H. F. & Devreotes, P. (1984) Development of Dictyostelium discoideum: Chemotaxis, cell-cell adhesion, and gene expression. In Microbial Development, (ed. Losick, R. and Shapiro, L.), pp. 219-254. Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Daniel, J. L., Molish, I. R. & Holmsen, H. (1981) Myosin phosphorylation in intact platelets. J. Biol. Chem. 256, 7510-4.

    PubMed  Google Scholar 

  • Daniel, J. L., Molish, I. R., Rigmaiden, M. Stewart, G. (1984) Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J. Biol. Chem. 259, 9826-31.

    PubMed  Google Scholar 

  • Delozanne, A. & Spudich, J. A. (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086-91.

    PubMed  Google Scholar 

  • Fukui, Y., Delozanne, A. & Spudich, J. A. (1990) Structure and Function of the Cytoskeleton of a Dictyostelium Myosin-defective Mutant. J. Cell Biol. 110, 367-78.

    PubMed  Google Scholar 

  • Fukui, Y. & Yumura, S. (1986) Actomyosin dynamics in chemotactic amoeboid movement in Dictyostelium. Cell Motil. and Cytoskel. 6, 662-73.

    Google Scholar 

  • Griffith, L. M., Downs, S. M. & Spudich, J. A. (1987) Myosin light chain kinase and myosin light chain phosphatase from Dictyostelium: Effects of reversible phosphorylation on myosin structure and function. J. Cell Biol. 104, 1309-23.

    PubMed  Google Scholar 

  • Ikebe, M., Mitani, Y., Kamisoyama, H., Matusuura, M. & Ikebe, M. (1994) Involvement of the C-terminal residues of the 20,000-dalton light chain of myosin on the regulation of smooth muscle actomyosin. Proc. Natl. Acad. Sci. 91, 9096-100.

    PubMed  Google Scholar 

  • Jordan, P. & Karess, R. (1997) Myosin light chain-activating phosphorylation sites are required for oogenesis in Drosophila. J. Cell Biol. 139, 1805-19.

    PubMed  Google Scholar 

  • Kamm, K. E. & Stull, J. T. (1985) The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Ann. Rev. Pharmacol. Toxicol. 25, 593-620.

    Google Scholar 

  • Knecht, D. A., Cohen, S. M., Loomis, W. F. & Lodish, H. F. (1986) Developmental regulation of Dictyostelium discoideum actin gene fusions carried on low-copy and high copy transformation vectors. Molec. Cell. Biol. 6, 3973-83.

    PubMed  Google Scholar 

  • Kron, S., Uyeda, T., Warrick, H. & Spudich, J. (1991) An approach to reconstituting motility of single myosin molecules. J. Cell Sci. 14, 129-33.

    Google Scholar 

  • Nachmias, V. T., Fukui, Y. & Spudich, J. A. (1989) Chemoattractant-elicited translocation of myosin in motile Dictyostelium. Cell Motil. Cytoskel. 13, 158-69.

    Google Scholar 

  • Onishi, H., Maita, T., Matsuda, G. & Fujiwara, K. (1992) Interaction between the heavy and the regulatory light chains in smooth muscle myosin subfragment 1. Biochemistry 31, 1201-10.

    PubMed  Google Scholar 

  • Ostrow, B., Chen, P. & Chisholm, R. L. (1994) Expression of a myosin regulatory light chain phosphorylation site mutant complements the cytokinesis and developmental defects of Dictyostelium RMLC null cells. J. Cell Biol. 127, 1945-55.

    PubMed  Google Scholar 

  • Rajasekharan, K. N., Morita, J. I., Mayadevi, M., Ikebe, M. & Burke, M. (1991) Formation and properties of smooth muscle myosin 20-kDa light chain-skeletal muscle myosin hybrids and photocrosslinking from the maleimidylbenzophenone-labeled light chain to the heavy chain. Arch. Biochem. Biophys. 288, 584-90.

    PubMed  Google Scholar 

  • Rayment, I., Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G. & Holden, H. M. (1993a) Three-Dimensional Structure of Myosin Subfragment-1: A Molecular Motor. Science 261, 50-8.

    PubMed  Google Scholar 

  • Rayment, I., Holden, H M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., & Milligan, R. A. (1993b) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58-65.

    PubMed  Google Scholar 

  • Sweeney, H. L., Bowman, B. F. & Stull, J. T. (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am. J. Physiol. 264, C1085-95.

    Google Scholar 

  • Trybus, K., Waller, G. & Chatman, T. (1994) Coupling of ATPase activity and motility in smooth muscle myosin is mediated by the regulatory light chain. J. Cell Biol. 124, 963-9.

    PubMed  Google Scholar 

  • Trybus, K. M. & Chatman, T. A. (1993) Chimeric Regulatory Light Chains as Probes of Smooth Muscle Myosin Function. J. Biol. Chem. 268, 4412-19.

    Google Scholar 

  • Uyeda, T. Q. P. & Spudich, J. A. (1993) A Functional Recombinant Myosin II Lacking a Regulatory Light Chain-Binding Site. Science 262, 1867-70.

    PubMed  Google Scholar 

  • Wessels, D., Soll, D. R., Knecht, D., Loomis, W. F., Delozanne, A. & Spudich, J. (1988) Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain. Develop. Biol. 128, 164-77.

    PubMed  Google Scholar 

  • Xie, X., Harrison, D., Schlichting, I., Sweet, R., Kalabokis, V., Szent-Gyorgyi, A. & Cohen, C. (1994). Structure of the regulatory domain of scallop myosin at 2.8A resolution. Nature 368, 306-12.

    PubMed  Google Scholar 

  • Yamakita, Y., Yamashiro, S. & Matsumura, F. (1994) in vivo phosphorylation of regulatory light chain of myosin II during mitosis of cultured cells. J. Cell Biol. 124, 129-37.

    PubMed  Google Scholar 

  • Yang, Z. & Sweeney, H. L. (1995) Restoration of phosphorylation-dependent regulation to the skeletal muscle myosin regulatory light chain. J. Biol. Chem. 270, 24646-9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Chaudoir, B.M., Trybus, K.M. et al. Expression of chicken gizzard RLC complements the cytokinesis and developmental defects of Dictyostelium RLC null cells. J Muscle Res Cell Motil 20, 177–186 (1999). https://doi.org/10.1023/A:1005405023020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005405023020

Keywords

Navigation