Skip to main content
Log in

Pharmacological Analysis of the Subunit Composition of the AMPA Receptor in Hippocampal Neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Experiments were performed on isolated neurons from hippocampal field CA1 and the dentate fascia to identify the subunit composition and distribution of splicing variants of AMPA receptor subunits. Currents evoked by the application of kainate were recorded using a whole-cell patch clamping method. The presence of GluR2 subunits in receptors was associated with a sharp reduction in the activity of the selective channel blocker IEM-1460. The composition of flip versions of subunits was assessed using cyclothiazide. AMPA receptors in the major cell types (pyramidal and granule cells) had low sensitivity to IEM-1460, while AMPA receptors of other cells (interneurons) had high or intermediate sensitivity. Cyclothiazide had strong potentiating effects on the main cell types in both structures as compared with interneurons. Thus, there is a correlation between the sensitivities of hippocampal neurons to IEM-1460 and cyclothiazide. The main cell types in both structures expressed large quantities of the GluR2 subunit in their AMPA receptors, with high levels of flip subunits, as compared with the other cell types, in which GluR2 subunits were virtually absent and the flop version predominated. This appears to reflect the functional features of different types of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. G. Magazanik, “Blockade of ion channels as an approach to studying subtypes of AMPA receptors,” Ros. Fiziol. Zh. im. I. M. Sechenova, 84, No. 10, 994–1005 (1998).

    Google Scholar 

  2. L. G. Magazanik, M. V. Samoilova, S. L. Buldakova, K. V. Essin, and V. E. Gmiro, “Selective suppression of AMPA/kainate receptors on hippocampal interneurons as a new approach to studying inhibitory systems,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 5-6, 19–29 (1997).

    Google Scholar 

  3. R. B. Barlow, Foundations of Pharmacology (1991).

  4. P. Bochet, E. Audinat, B. Lambolez, F. Crepel, J. Rossier, M. Iino, K. Tsuzuki, and S. Ozawa, “Subunit composition at the single-cell level explains functional properties of a glutamate-gated channel,” Neuron, 12, 383–388 (1994).

    Google Scholar 

  5. N. Burnashev, Z. Zhou, E. Neher, and B. Sakmann, “Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes,” J. Physiol. (London), 485, 403–418 (1995).

    Google Scholar 

  6. D. W. Choi, “Calcium-mediated neurotoxicity: relation to specific channel types and role in ischemic damage,” TINS, 11, 465–469 (1988).

    Google Scholar 

  7. M. W. Fleck, R. Bahring, D. K. Patneau, and M. L. Mayer, “AMPA receptor heterogeneity in rat hippocampal neurons revealed by differential sensitivity to cyclothiazide,” J. Neurophysiol., 75, No. 6, 2322–2333 (1996).

    Google Scholar 

  8. T. F. Freund and G. Buzsaki, “Interneurons of hippocampus,” Hippocampus, 6, 345–470 (1996).

    Google Scholar 

  9. J. R. Geiger, T. Melcher, D. S. Koh, B. Sakmann, P. H. Seeburg, P. Jonas, and H. Monyer, “Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS,” Neuron, 15, 193–204 (1995).

    Google Scholar 

  10. J. A. Gorter, J. J. Petrozzino, E. M. Aronica, D. M. Rosenbaum, T. Opitz, M. V. Bennett, J. A. Connor, and R. S. Zukin, “Global ischemia induces downregulation of GluR2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil,” J. Neurosci., 17, No. 16, 6179–6188 (1997).

    Google Scholar 

  11. M. Hollmann, M. Hartley, and S. Heinemann, “Ca2+ permeability of KA-AMPA gated glutamate receptor channels depends on subunit composition,” Science, 252, 851–853 (1991).

    Google Scholar 

  12. M. Hsu and G. Buszaki, “Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia,” J. Neurosci., 13, 3964–3979 (1993).

    Google Scholar 

  13. T. Isa, S. Itazawa, M. Iino, K. Tsuzuki, and S. Ozawa, “Distribution of neurones expressing inwardly rectifying and Ca2+-permeable AMPA receptors in rat hippocampal slices,” J. Physiol. (London), 491, 719–733 (1996).

    Google Scholar 

  14. P. Jonas and N. Burnashev, “Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels,” Neuron, 15, 987–990 (1995).

    Google Scholar 

  15. P. Jonas, C. Racca, B. Sakmann, P. H. Seeburg, and H. Monyer, “Differences in calcium permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluRB subunit expression,” Neuron, 12, 1281–1289 (1994).

    Google Scholar 

  16. S. K. Kamboj, G. T. Swanson, and S. G. Cull Candy, “Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors,” J. Physiol. (London), 486, 297–303 (1995).

    Google Scholar 

  17. K. Keinanen, W. Wisden, B. Sommer, P. Werner, A. Herb, T. A. Verdoorn, B. Sakmann, and P. H. Seeburg, “A family of AMPA-selective glutamate receptors,” Science, 249, 556–560 (1990).

    Google Scholar 

  18. D. S. Koh, J. R. Geiger, P. Jonas, and B. Sakmann, “Ca2+-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus,” J. Physiol. (London), 485, 383–402 (1995).

    Google Scholar 

  19. H. Lomeli, J. Mosbacher, T. Melcher, T. Hoger, G. R. Geiger, T. Kuner, H. Monyer, M. Higuchi, A. Bach, and P. H. Seeburg, “Control of kinetic properties of AMPA receptor channels by nuclear RNA editing,” Science, 266, 1709–1713 (1994).

    Google Scholar 

  20. F. H. Lopes da Silva, M. P. Witter, P. H. Boeijinga, and A. H. Lohman, “Anatomic organization and physiology of the limbic cortex,” Physiol. Rev., 70, 453–511 (1990).

    Google Scholar 

  21. Y. M. Lu, H. Z. Yin, J. Chiang, and J. H. Weiss, “Ca2+-permeable AMPA-kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury,” J. Neurosci., 16, 5457–5465 (1996).

    Google Scholar 

  22. G. Maccaferri and C. J. McBain, “Long-term potentiation in distinct subtypes of hippocampal non-pyramidal neurons,” J. Neurosci., 16, 5334–5343 (1996).

    Google Scholar 

  23. L. G. Magazanik, S. L. Buldakova, M. V. Samoilov, V. E. Gmiro, I. Mellor, and P. R. N. Usherwood, “Block of recombinant and native AMPA/kainate receptor channels by adamantane derivatives,” J. Physiol. (London), 505, No. 3, 655–663 (1997).

    Google Scholar 

  24. N. K. Mahanty and P. Sah, “Calcium permeable AMPA receptors mediate long-term potentiation in interneurones in amygdala,” Nature, 394, 683–686 (1998).

    Google Scholar 

  25. C. J. McBain and R. Dingledine, “Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus,” J. Physiol. (London), 462, 373–392 (1993).

    Google Scholar 

  26. H. Monyer, P. H. Seeburg, and W. Wisden, “Glutamate-operated channels: developmentally early and mature forms arise from alternative splicing,” Neuron, 6, No. 5, 799–810 (1991).

    Google Scholar 

  27. J. Mosbacher, R. Schoepfer, H. Monyer, N. Burnashev, P. H. Seeburg, and J. P. Ruppersberg, “A molecular determinant for submillisecond desensitization in glutamate receptors,” Science, 266, 1059–1062 (1994).

    Google Scholar 

  28. K. M. Partin, M. W. Fleck, and M. L. Mayer, “AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate,” J. Neurosci., 16, 6634–6647 (1996).

    Google Scholar 

  29. K. M. Partin, D. K. Patneau, C. A. Winters, M. L. Mayer, and A. Buonanno, “Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A,” Neuron, 11, 1069–1082 (1993).

    Google Scholar 

  30. D. E. Pellegrini-Giampietro, J. A. Gorter, M. V. L. Bennett, and R. S. Zukin, “The GluR2 (GluR-B) hypothesis: Ca2+-permeable AMPA receptors in neurological disorders,” TINS, 20, 464–470 (1997).

    Google Scholar 

  31. C. Racca, V. Catania, H. Monyer, and B. Sakmann, “Expression of AMPA-glutamate receptor B subunit in rat hippocampal GABAergic neurons,” Eur. J. Neurosci., 8, 1580–1590 (1996).

    Google Scholar 

  32. M. V. Samoilova, S. L. Buldakova, V. S. Vorobjev, I. N. Sharonova, and L. G. Magazanik, “Open channel blocking drug, IEM-1460, reveals functionally distinct ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in rat brain neurons,” Neuroscience (1999) (in press).

  33. P. H. Seeburg, “The TIPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels,” TIPS, 14, 297–303 (1993).

    Google Scholar 

  34. B. Sommer, M. Kohler, R. Sprengel, and P. H. Seeburg, “RNA editing in brain controls a determinant of ion flow in glutamate-gated channels,” Cell, 67, 11–20 (1991).

    Google Scholar 

  35. V. S. Vorobjev, “Vibrodissection of sliced mammalian nervous tissue,” J. Neurosci. Meth., 38, 145–150 (1991).

    Google Scholar 

  36. V. S. Vorobjev, I. N. Sharonova, and H. L. Haas, “A simple perfusion system for patch-clamp studies,” J. Neurosci. Meth., 68, 303–307 (1996).

    Google Scholar 

  37. M. S. Washburn, M. Numberger, S. Zhang, and R. Dingledine, “Differential dependence on GluR2 expression of three characteristic features of AMPA receptors,” J. Neurosci., 17, 9393–9406 (1997).

    Google Scholar 

  38. J. C. Watkins, P. Krosgaard-Larsen, and T. Honore, “Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists,” TIPS, 11, 25–33 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bol'shakov, K.V., Buldakova, S.L. Pharmacological Analysis of the Subunit Composition of the AMPA Receptor in Hippocampal Neurons. Neurosci Behav Physiol 31, 219–225 (2001). https://doi.org/10.1023/A:1005276627192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005276627192

Navigation