Skip to main content
Log in

Transposable DNA elements and life history traits: II. Transposition of P DNA elements in somatic cells reduces fitness, mating activity, and locomotion of Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Some transposable DNA elements in higher organisms are active in somatic cells, as well as in germinal cells. What effect does the movement of DNA elements in somatic cells have on life history traits? It has previously been reported that somatically active P and mariner elements in Drosophila induce genetic damage and significantly reduce lifespan. In this study, we report that the movement of P elements in somatic cells also significantly reduces fitness, mating activity, and locomotion of Drosophila melanogaster. If other elements cause similar changes in life history traits, it is doubtful if transposable DNA elements remain active for long in somatic cells in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, A., Q.M. Eastman & D.G. Schatz, 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751.

    Article  PubMed  CAS  Google Scholar 

  • Ajioka, J.W. & D.L. Hartl, 1989. Population dynamics of transposable elements, pp. 939–958 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Andolfatto, P., J.D. Wall & M. Kreitman, 1999. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics 153: 1297–1311.

    PubMed  CAS  Google Scholar 

  • Arkhipova, I.R., N.V. Lyubomirskaya & Y.V. Ilyin, 1995. Drosophila Retrotransposons. R.G. Landers Company. Austin, Texas, USA.

    Google Scholar 

  • Ashburner, M., 1989. Drosophila: A Laboratory Manual. Cold Spring Harbor Laboratory Press, pp. 781–810, Cold Spring Harbor, New York.

    Google Scholar 

  • Barnett, Y.A., 1997. Somatic mutations and aging: cause or effect? Biochem. Soc. Trans. 25: 332–335.

    PubMed  CAS  Google Scholar 

  • Beckman, K.B. & B.N. Ames, 1998. The free radical theory of aging matures. Physiol. Rev. 78: 547–581.

    PubMed  CAS  Google Scholar 

  • Belyaeva, E.S., E.G. Pasyukova, V.A. Gvozdev, Y.V. Ilyin & L.Z. Kaidanov, 1982. Transpositions of mobile dispersed genes in Drosophila melanogaster and fitness of stocks. Mol. Gen. Genet. 185: 324–328.

    Article  PubMed  CAS  Google Scholar 

  • Berg, D.E. & M.M. Howe, 1989. Mobile DNA. American Society of Microbiology Pub. Washington, DC.

    Google Scholar 

  • Bernstein, C. & H. Bernstein, 1991. Aging, Sex, and DNA Repair. Academic Press, New York.

    Google Scholar 

  • Bingham, P.M., M.G. Kidwell & G.M. Rubin, 1982. The molecular basis of P-M hybrid dysgenesis: the role of P element, a P-strain-specific transposon family. Cell 29: 995–1004.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, R.K. & W.M. Gelbart, 1989. The transposable element hobo of Drosophila melanogaster, pp. 523–529 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Boeke, J.D., D.J. Eichinger & G. Natsoulis, 1991. Doubling Ty1 element copy number in Saccharomyces cerevisiae: host genome stability and phenotypic effects. Genetics 129: 1043–1052.

    PubMed  CAS  Google Scholar 

  • Borlase, S.C., D.A. Loebel, R. Frankham, R.K. Nurthen, D.A. Briscoe & G.E. Daggard, 1993. Modeling problems in conservation genetics using captive Drosophila populations: consequences of equalization of family sizes. Conserv. Biol. 7: 122–131.

    Article  Google Scholar 

  • Branciforte, D. & S.L. Martin, 1994. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol. Cell. Biol. 14: 2584–2592.

    PubMed  CAS  Google Scholar 

  • Bratthauer, G.L. & T.G. Fanning, 1992. Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7: 507–510.

    PubMed  CAS  Google Scholar 

  • Bregliano, J. & M.G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in Mobile Genetic Elements, edited by J.A. Shapiro. Academic Press, New York.

    Google Scholar 

  • Britten, R.J., 1997. Mobile elements inserted in the distant past have taken on important functions. Gene 205: 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J.F.Y., 1995. Transposable selfish DNA, pp. 130–153 in Mobile Genetic Elements, edited by D.J. Sherratt. IRL Press, Oxford.

    Google Scholar 

  • Caceres, M., J.M. Ranz, A. Barbadilla, M. Long & A. Ruiz, 1999. Generation of a widespread Drosophila inversion by a transposable element. Science 285: 415–418.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & C.H. Langley, 1989. The population genetics of Drosophila transposable elements. Annu. Rev. Genet. 23: 251–287.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., P. Sniegowski & W. Stephan, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, K., 1966. Locomotor activity in Drosophila. II. Selection for active and inactive strains. Anim. Behav. 14: 444–449.

    Article  PubMed  CAS  Google Scholar 

  • Eanes, W.F., C. Wesley, J. Hey, D. Houle & J.W. Ajioka, 1988. The fitness consequences of P element insertion in Drosophila melanogaster. Genet. Res. Camb. 52: 17–26.

    Google Scholar 

  • Eanes, W.F., J. Labate & J.W. Ajioka, 1989. Restriction-map variation with the yellow-achaete-scute region in five populations of Drosophila melanogaster. Mol. Biol. Evol. 6: 492–502.

    PubMed  CAS  Google Scholar 

  • Emmons, S.W. & L. Yesner, 1984. High-frequency excision of transposable element Tc1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 36: 599–605.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W.R., 1989. P Elements in Drosophila melanogaster, pp. 437–484 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Engels, W.R., W.K. Benz, C.R. Preston, P.L. Graham, R.W. Phillis & H.M. Robertson, 1987. Somatic effects of P element activity in Drosophila melanogaster: pupal lethality. Genetics 117: 745–757.

    PubMed  CAS  Google Scholar 

  • Engels, W.R., 1996. P elements in Drosophila, pp. 103–123 in Transposable Elements, edited by H. Saedler and A. Gierl. Springer, Berlin.

    Google Scholar 

  • Evgen'ev, M.B., E.I. Mndzhoyan, E.S. Zelentosova, N.G. Shostak, G.T. Lezin, V.V. Velikodvorskaya & E.V. Poluektova, 1998. Mobile elements and speciation. Mol. Biol. 32: 161–168.

    Google Scholar 

  • Fedoroff, N.V., 1999. Transposable elements as a molecular evolutionary force. Annals N.Y. Acad. Sci. 870: 251–264.

    Article  CAS  Google Scholar 

  • Finch, C.E., 1990. Longevity, Senescence, and the Genome. University of Chicago, Press, Chicago.

    Google Scholar 

  • Fitzpatrick, B.J. & J.A. Sved, 1986. High levels of fitness modifiers induced byhybrid dysgenesis in Drosophila melanogaster. Genet. Res. Camb. 48: 89–94.

    Google Scholar 

  • Fontdevila, A., 1992. Genetic instability and rapid speciation: are they coupled? Genetica 86: 247–258.

    Article  Google Scholar 

  • Georgiev, P.G., S.L. Kiselev, O.B. Simonova & T.I. Gerasimova, 1990. Anovel transposition system in Drosophila melanogaster depending on Stalker mobile genetic element. EMBO J. 9: 2037–2044.

    PubMed  CAS  Google Scholar 

  • Getz, C. & N. van Schaik, 1991. Somatic mutation in the wings of Drosophila melanogaster females dysgenic due to P elements when reared at 29°C. Mut. Res. 248: 187–194.

    CAS  Google Scholar 

  • Gilligan, D.M., L.M. Woodworth, M.E. Montgomery, D.A. Briscoe & R. Frankham, 1997. Is mutation accumulation a threat to the survival of endangered populations? Conserv. Biol. 11: 1235–1241.

    Article  Google Scholar 

  • Ginzburg, L.R., P.M. Bingham & S. Yoo, 1984. On the theory of speciation induced by transposable elements. Genetics 107: 331–341.

    PubMed  CAS  Google Scholar 

  • Giraud, T. & P. Capy, 1996. Somatic activity of the mariner transposable element in natural populations of Drosophila simulans. Proc. R. Soc. Lond. B 263: 1481–1486.

    CAS  Google Scholar 

  • Graur, D. & W.-H. Li, 2000. Fundamentals of Molecular Evolution. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Grell, E.H., 1970. Distributive pairing: Mechanism for segregation of compound autosomal chromosomes in oocytes of Drosophila melanogaster. Genetics 65: 65–74.

    PubMed  CAS  Google Scholar 

  • Hartl, D.L., 1989. Transposable element mariner in Drosophila species, pp. 531–536 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Hartl, D.L. & H. Jungen, 1979. Estimation of average fitness of populations of Drosophila melanogaster and the evolution of fitness in experimental populations. Evolution 33: 371–380.

    Article  Google Scholar 

  • Hartl, D.L. & D.S. Haymer, 1983. Measures of fitness in Drosophila. Stadler Symp. 15: 43–55.

    Google Scholar 

  • Haymer, D.S. & D.L. Hartl, 1982. The experimental assessment of fitness in Drosophila. I. Comparative measures of competitive reproductive success. Genetics 102: 455–466.

    Google Scholar 

  • Haymer, D.S. & D.L. Hartl, 1983. The experimental assessment of fitness in Drosophila. II. A comparison of competitive and noncompetitive measures. Genetics 104: 343–352.

    Google Scholar 

  • Henderson, S.A., R.C. Woodruff & J.N. Thompson, Jr., 1978. Spontaneous chromosome breakage at male meiosis associated with male recombination in Drosophila melanogaster. Genetics 88: 93–107.

    Google Scholar 

  • Herman, R.K. & J.E. Shaw, 1987. The transposable genetic element Tc1 in the nematode Caenorhabditis elegans. Trends Genet. 3: 222–225.

    Article  CAS  Google Scholar 

  • Hiom, K., M. Melek & M. Gellert, 1998. DNA transpositions by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463–470.

    Article  PubMed  CAS  Google Scholar 

  • Holm, D.G., 1976. Compound autosomes, pp. 529–561 in The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, vol 1b. Academic Press, New York.

    Google Scholar 

  • Huie, M.L., A.L. Shanske, J.S. Kasper, R.W. Marion & R. Hirschhorn, 1999. A large Alu-mediated deletion, identified by PCR, as the molecular basis for glycogen storage disease type II (GSDII). Hum. Genet. 104: 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, G.D.D. & M. Schilthuizen, 1998. Selfish genetic elements and speciation. Heredity 80: 2–8.

    Article  Google Scholar 

  • Ilyin, Y.V., N.V. Lyubomirskaya & A.I. Kim, 1991. Retrotransposon Gypsy and genetic instability in Drosophila (review). Genetica 85: 13–22.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, J.W., M.M. Medhora & D.L. Hartl, 1986. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. USA 83: 8684–8688.

    Article  PubMed  CAS  Google Scholar 

  • Jouan-Dufournel, I., R. Cosset, D. Contamine, G. Verdier & C. Biemont, 1996. Transposable elements behavior following viral genomic stress in Drosophila melanogaster inbred line. J. Mol. Evol. 43: 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Jungen, H. & D.L. Hartl, 1979. Average fitness and populations of Drosophila melanogaster as estimated using compound-autosome strains. Evolution 33: 359–370.

    Article  Google Scholar 

  • Kazazian, H.H., 1998. Mobile elements and disease. Curr. Opin. Genet. Dev. 8: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A.I. & E.S. Belyaeva, 1991. Transposition of mobile elements gypsy (mdg4) and hobo in germ-line and somatic cells of a genetically unstable mutator strain of Drosophila melanogaster. Mol. Gen. Genet. 229: 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood, T.B.L., 1988. DNA, mutations and aging. Mutat. Res. Pilot Issue: 7–13.

  • Laski, F.A., D.C. Rio & G.M. Rubin, 1986. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44: 7–19.

    Article  PubMed  CAS  Google Scholar 

  • Levran, O., N.A. Doggett & A.D. Auerbach, 1998. Identification of Alu-mediated deletions in the Fanconi Anemia gene FAA. Human Mut. 12: 145–152.

    Article  CAS  Google Scholar 

  • Lindsley, D.L. & G.G. Zimm, 1992. The Genome of Drosophila melanogaster. Academic Press. New York.

    Google Scholar 

  • Lyttle, T.W. & D.S. Haymer, 1992. The role of transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster. Genetica 86: 113–126.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., 1989. Transposable elements and fitness in Drosophila melanogaster. Genome 31: 284–295.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., R.F. Lyman & M.S. Jackson, 1992. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics 130: 315–332.

    PubMed  CAS  Google Scholar 

  • Martin, G.M., S.N. Austad & T.E. Johnson, 1996. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat. Genet. 13: 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Mason, J.M. & H. Biessmann, 1995. The unusual telomeres of Drosophila. Trends Genet. 11: 58–62.

    Article  PubMed  CAS  Google Scholar 

  • Mathiopoulos, K.D., D. Torre, V. Predazzi, V. Petrarca & M. Coluzzi, 1998. Cloning of inversion breakpoints in the Anopheles gambiae complex traces a transposable element at the inversion junction. Proc. Natl. Acad. Sci. USA 95: 12444–12449.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J.F., 1989. The potential evolutionary significance of retroviral-like transposable elements in peripheral populations, pp. 190–205 in Evolutionary Biology of Transient Unstable Populations, edited by A. Fontdevila. Springer-Verlag, Berlin.

    Google Scholar 

  • McDonald, J.F., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.

    Article  Google Scholar 

  • McDonald, J.F., 1993. Transposable elements: possible catalysts of organisms evolution. TREE 10: 123–126.

    Google Scholar 

  • McDonald, J.F., 1993. Transposable Elements and Evolution. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • McElwain, M.C., 1986. The absence of somatic effects of P-M hybrid dysgenesis in Drosophila melanogaster. Genetics 113: 897–918.

    PubMed  CAS  Google Scholar 

  • Miki, Y., 1998. Retrotransposable integration of mobile genetic elements in human diseases. J. Hum. Genet. 43: 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Miki, Y., I. Nishisho, A. Horii, Y. Miyoshi, J Utsunnomiya, K.W. Kinzler, B. Vogelstein & Y. Nakamura, 1992. Disruption of the APC gene by a retortransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52: 643–645.

    PubMed  CAS  Google Scholar 

  • Minkoff, C. & T.G. Wilson, 1992. The competitive ability and fitness components of the Methoprene-tolerant (Met) Drosophila mutant resistant to juvenile hormone analog insecticides. Genetics 131: 91–97.

    PubMed  Google Scholar 

  • Moerman, D.G. & R.H. Waterston, 1989. Mobile elements in Caenorhabditis elegans and other nematodes, pp. 537–556 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Moller, A.P. & J.P. Swaddle, 1997. Asymmetry, Developmental Stability, and Evolution. Oxford University Press.

  • Montagna, M., M. Santacatterina, A. Torri, C. Menin, D. Zullato, L. Chieco-Bianchi & E. D'Andrea, 1999. Identification of a 3 kb Alu-mediated BRCA1 gene rearrangement in two breast/ovarian cancer families. Oncogen 18: 4160–4165.

    Article  CAS  Google Scholar 

  • Montgomery, E.A., S.-M. Huang, C.H. Langley & B.H. Judd, 1991, Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: Genome structure and evolution. Genetics 129: 1085–1098.

    PubMed  CAS  Google Scholar 

  • Moran, J.V., R.J. DeBerardinis & H.H. Kazazian, Jr., 1999. Exon shuffling by L1 retrotransposition. Science 283: 1530–1534.

    Article  PubMed  CAS  Google Scholar 

  • Morse, B., G. Rothberg, V.J. South, J.M. Spandorfer & S.M. Astrin, 1988. Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma. Nature 333: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Nikitin, A.G. & R.C. Woodruff, 1995. Somatic movement of the mariner transposable element and lifespan of Drosophila species. Mut. Res. 338: 43–49.

    CAS  Google Scholar 

  • Nass, T.P., R.J. DeBerardinis, J.V. Moran, E.M. Ostertag, S.F. Kingsmore, M.F. Seldin, Y. Hayashizaki, S.L. Martin & H.H. Kazazian, 1998. An actively retrotransposing novel subfamily of mouse L1 elements. EMBO J. 17: 590–597.

    Article  Google Scholar 

  • Nitasaka, E., T. Yamazaki & M.M. Green, 1995. The molecular analysis of brown eye color mutations isolated from geographically discrete populations of Drosophila melanogaster. Mol. Gen. Genet. 247: 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Nouaud, D., B. Boeda, L. Levy & D. Anxolabehere, 1999. A P element has induced intron formation in Drosophila. Mol. Biol. Evol. 16: 1503–1510.

    PubMed  CAS  Google Scholar 

  • Nurminsky, D.I., M.V. Nurminskaya, D. De Aguiar & D.L. Hartl, 1998. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396: 572–575.

    Article  PubMed  CAS  Google Scholar 

  • Osiewacz, H.D., 1997. Genetic regulation of aging. J. Mol. Med. 75: 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.L., O.N. Danilevskaya, K.L. Traverse & K. Lowenhaupt, 1997. Evolutionary links between telomeres and transposable elements. Genetica 100: 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Petrij-Bosch, A., T. Peelen, M. van Vliet, R. van Eijk, R. Olmer, M. Drusedau, F.B. Hogervorst, S. Hageman, P.J. Arts, M.J. Ligtenberg, H. Meijers-Heijboer, J.G. Klijn, H.F. Vasen, C.J. Cornelisse, L.J. van't Veer, E. Bakker & G.J. van Ommen, 1997. BRCA1 genomic deletions are major founder mutations in Dutch breast cancer patients. Nat. Genet. 17: 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Plasterk, R.H.A., 1996. The TC1/mariner transposable family, pp. 125–1143 in Transposable Elements, edited by H. Saedler and A. Gierl, Springer, Berlin.

    Google Scholar 

  • Rio, D.C., 1990. Molecular mechanisms regulating Drosophila P element transposition. Annu. Rev. Genet. 24: 543–578.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., C.R. Preston, R.W. Phillis, D.M. Johnson-Schlitz, W.K. Benz & W.R. Engels, 1988. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118: 461–470.

    PubMed  CAS  Google Scholar 

  • Rose, M.R., 1991. Evolutionary Biology of Aging. Oxford University Press. Oxford.

    Google Scholar 

  • Rose, M.R. & W.F. Doolittle, 1983. Molecular biological mechanisms of speciation. Science 220: 157–162.

    CAS  Google Scholar 

  • Rothberg, P.G., S. Ponnuru, D. Baker, J.F. Bradley, A.I. Freeman, G.W. Cibis, D.J. Harris & D.P. Heruth, 1997. A deletion polymorphism due to Alu-Alu recombination in intron 2 of the retinoblastoma gene: association with human gliomas. Mol. Carcinog. 19: 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Sassaman, D.M., B.A. Dombroski, J.V. Moran, M.L. Kimberland, T.P. Nass, R.J. DeBerardinis, A. Gabriel, G.D. Swergold & H.H. Kazazian, 1997. Many human L1 elements are capable of retrotransposition. Nat. Genet. 16: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Seperack, P.K., M.C. Strobel, D.J. Corrow, N.A. Jenkins & N.G. Copeland, 1988. Somatic and germ-line reverse mutation rates of the retrovirus-induced dilute coat-color mutation of DBA mice. Proc. Natl. Acad. Sci. USA 85: 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Slebos, R.J., M.A. Resnick & J.A. Taylor, 1998. Inactivation of the p53 tumor suppressor gene via a novel Alu rearrangement. Cancer Res. 58: 5333–5336.

    PubMed  CAS  Google Scholar 

  • Sved, J.A., 1989. The measurement of fitness in Drosophila, pp. 99–104 in Evolution and Animal Breeding, edited by W.G. Hill and T.F.C. Mackay. CAB International, Edinburgh.

    Google Scholar 

  • Swensen, J., M. Hoffman, M.H. Skolnick & S.L. Neuhausen, 1997. Identification of a 14 kb deletion involving the promoter region of BRCA1 in a breast cancer family. Hum. Mol. Genet. 6: 1513–1517.

    Article  PubMed  CAS  Google Scholar 

  • ten Have, J.F., M.M. Green & A.J. Howells, 1995. Molecular characterization of spontaneous mutations at the scarlet locus of Drosophila melanogaster. Mol. Gen. Genet. 249: 673–681.

    Article  PubMed  CAS  Google Scholar 

  • Teng, S., B. Kim & A. Gabriel, 1996. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383: 641–644.

    Article  PubMed  Google Scholar 

  • Thompson, J.N., Jr., R.C. Woodruff & G.B. Schaefer, 1978. An assay of somatic recombination in male recombination lines of Drosophila melanogaster. Genetica 49: 77–80.

    Article  Google Scholar 

  • Wilke, C.M. & J. Adams, 1992. Fitness effects of Ty transpositions in Saccharomyces cerevisiae. Genetics 131: 31–42.

    PubMed  CAS  Google Scholar 

  • Wilke, C.M., E. Maimer & J. Adams, 1993. The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae, pp. 51–69 in Transposable Elements and Evolution, edited by J.F. McDonald. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Woodruff, R.C., 1992. Transposable DNA elements and life history traits. I. Transposition of P DNA elements in somatic cells reduces the lifespan of Drosophila melanogaster. Genetica 86: 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff, R.C. & A.G. Nikitin, 1995. P DNA element movement in somatic cells reduces lifespan in Drosophila melanogaster: Evidence in support of the somatic mutation theory of aging. Mut. Res. 338: 35–42.

    CAS  Google Scholar 

  • Wu, M., E.M. Rinchik, D. Wilkinson & D.K. Johnson, 1997. Inherited somatic mosaicism caused by an intracisternal A particle insertion in the mouse tyrosinase gene. Proc. Natl. Acad. Sci. USA 94: 890–894.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodruff, R., Thompson, J., Barker, J. et al. Transposable DNA elements and life history traits: II. Transposition of P DNA elements in somatic cells reduces fitness, mating activity, and locomotion of Drosophila melanogaster. Genetica 107, 261–269 (1999). https://doi.org/10.1023/A:1003957227608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003957227608

Navigation