Skip to main content
Log in

Zinc barrel electroplating using low cyanide electrolytes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of plating conditions on the cathode efficiency of zinc barrel electroplating and the quality of deposited layers for low cyanide electrolytes is analysed. The investigations are carried out using factorial design methodology. The first part of the study shows how electrolyte components, such as brightening agent, sodium carbonate concentration, sodium hydroxide concentration, sodium cyanide concentration and zinc metal content, influence cathode efficiency and the morphology and the texture of the zinc electrodeposits. A mathematical model that fits experimental data is suggested and the pseudo three-dimensional plot of yield as a function of electrolyte composition for three significant component mixtures, brightening agent, sodium cyanide concentration and zinc metal content, is represented. The second part of the study shows how varying six process parameters influences current efficiency and metal thickness distribution. For the range studied, efficiency is affected by workload volume, current density, perforation and part size, but not by rotation speed and quantity of charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Catonné, Actualité chimique 1 (1992) 67.

    Google Scholar 

  2. A.W. Wallbank, Proc. Amer. Electroplaters' Soc. 46 (1959) 306.

    Google Scholar 

  3. P. Glab, R. Scott Modjeska and S.P. Gary, Proc. Amer. Electroplaters' Soc. 47 (1960) 184.

    Google Scholar 

  4. H. Henig, Galvanotechnik-Oberflächenschutz 1 (1966) 1.

    Google Scholar 

  5. L. Nanis, Plating 58 (1971) 805.

    Google Scholar 

  6. S.E. Craig, R.E. Harr and P. Mathiesen, Plating 61 (1974) 1101.

    Google Scholar 

  7. H.D. Hedrich, W. Günter and Ch.J. Raub, Surf. Technol. 11 (1980) 443.

    Google Scholar 

  8. W.C. Geissman and R.A. Carlson, Proc. Amer. Electroplaters' Soc. 39 (1952) 153.

    Google Scholar 

  9. F.I. Nobel, B.D. Ostrow, R.B. Kessler and D.W. Thomson, Plating 53 (1966) 1099.

    Google Scholar 

  10. F.I. Nobel and D.W. Thomson, Plating 57 (1970) 469.

    Google Scholar 

  11. M.J. Burrill and C.M. Prosser, Trans. I.M.F. 52 (1974) 43.

    Google Scholar 

  12. D.R. Gabe and H.K. Tse, Trans. I.M.F. 58 (1980) 4.

    Google Scholar 

  13. J.A. Zehnder and al, Plat. Surf. Finish. 9 (1975) 862.

    Google Scholar 

  14. H.D. Hedrich, Metalloberfläche 34 (1980) 462.

    Google Scholar 

  15. W. Paatsch, Metalloberfläche 32 (1978) 12.

    Google Scholar 

  16. S.P. Bagaev and K.S. Pedan, Prot. Met. 20 (1984) 883.

    Google Scholar 

  17. J. McBreen, Electrochem. Soc. Proc. 92 (1992) 248.

    Google Scholar 

  18. M.G. Vigier, ‘Pratique des plans d'expérience’ (Ed. Organisation, Paris, 1988).

  19. S.N. Deming and S.L. Morgan, ‘Experimental Design, Data Handling in Science and Technology’, vol 11 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  20. M. Wery, Théses, Université Besançon (1995).

  21. H. Geduld, ‘Zinc Plating’ (Finishing Publications Ltd, Teddington, 1988).

    Google Scholar 

  22. R. Tournier, ‘Fiches techniques’ (Libr. des Traitements de Surface, Paris, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wery, M., Catonné, J., Ligier, V. et al. Zinc barrel electroplating using low cyanide electrolytes. Journal of Applied Electrochemistry 29, 733–743 (1999). https://doi.org/10.1023/A:1003579321625

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003579321625

Navigation