Skip to main content
Log in

Major and Minor Reactions in Fischer–Tropsch Synthesis on Cobalt Catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Minor reactions, accompanying the major reactions for building straight-chains of aliphatic hydrocarbons from the reactants CO and H2 on the surface of cobalt catalysts, can contribute substantially to the understanding of the regime of Fischer–Tropsch synthesis. This goal affords precise mass balances, precise determination of product composition and consistent kinetic schemes for obtaining the right kinetic coefficients. The concept of self-organization of the Fischer–Tropsch regime is established from time dependence of activity, selectivity and catalyst structure. A process of thermodynamically controlled restructuring/segregation of the cobalt surface is addressed and understood as activating the catalyst and specifically, disproportionating on-plane sites into sites of lower coordination (on-top sites) and higher coordination (in-hole sites). These different sites appear to collaborate in the Fischer–Tropsch regime, with steps of coordination chemistry (comparable to those of transition metal complexes) on on-top sites and dissociation (specifically of CO) on in-hole sites and further in principle suppressed reactions on on-plane sites. This concept is developed and illustrated here with the results of several investigations such as tracing of activity and selectivity during the initial episodes of synthesis, experiments with added (14C-labeled) olefins and variation of synthesis parameters to see their specific influences. As minor reactions of coordination chemistry on on-top sites, reversible CH2 cleavage from alkyl chains, CO insertion and ethene insertion are visualized. On on-plane sites CO methanation, olefin hydrogenation and olefin double bond shift are noticed, but much inhibited.

As compared to Fischer–Tropsch on iron catalysts, the common Fischer–Tropsch principle appears to be the inhibition of chain desorption to allow for growth reactions of the adsorbed chains. Minor reactions and detailed kinetics on iron and cobalt catalysts differ basically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Baoxin Zhang, Dilver Peña Fuentes & Armin Börner

References

  1. E.F.G. Herington, Chem. Ind. 65 (1946) 346.

    Google Scholar 

  2. R.A. Friedel and R.B. Anderson, J. Am. Chem. Soc. 72 (1950) 1212, 2307.

    Google Scholar 

  3. H. Schulz, K. Beck and E. Erich, Stud. Surf. Sci. Catal. 36 (1988) 457.

    Google Scholar 

  4. H. Schulz and Zh. Nie, Stud. Surf. Sci. Catal. 136 (2001) 159.

    Google Scholar 

  5. H. Schulz, Zh. Nie and F. Ousmanov, Catal. Today, 71 (2002) 351.

    Google Scholar 

  6. Zh. Nie, Dissertation (University Karlsruhe, Karlsruhe, 1997).

    Google Scholar 

  7. H. Schulz, E. van Steen and M. Claeys, Stud. Surf. Sci. Catal. 81 (1994) 455.

    Google Scholar 

  8. H. Pichler, Adv. Catal. 4 (1952) 271.

    Google Scholar 

  9. H.H. Storch, N. Golumbic and R.B. Anderson, The Fischer-Tropsch and Related Syntheses.

  10. F. Fischer and H. Koch, Brennstoff-Chemie 13 (1932) 61.

    Google Scholar 

  11. H. Schulz, Zh. Nie, and F. Ousmanov, Catal. Today, 71 (2002) 351.

    Google Scholar 

  12. M. CLaeys, Dissertation (University Karlsruhe, Karlsruhe, 1997).

    Google Scholar 

  13. H. Schulz, K. Beck and E. Erich, Fuel Process. Technol. 18 (1988) 293.

    Google Scholar 

  14. H. Schulz, K. Beck and E. Erich, in Proc. 9th Int. Congr. on Catalysis, Calgary, M. Phillips and M. Ternan (eds), Vol. 2 (The Chemical Institute of Canada, Ottawa, 1988) p. 829.

    Google Scholar 

  15. H. Schulz, E. van Steen and M. Claeys, Top. Catal. 2 (1995) 223.

    Google Scholar 

  16. H. Schulz, C1-Mol. Chem. 1 (1985) 231.

    Google Scholar 

  17. H. Schulz, E. van Steen and M. Claeys, Proc. DGMK-Conf. Selective Hydrogenations and Dehydrogenations, 11-12 November 1993, Kassel (DGMK, Hamburg, 1993) p. 139.

    Google Scholar 

  18. H. Schulz and H. Goekcebay, in Catalysis of Organic Reactions, J.R. Kosak (ed.) (Marcel Dekker, New York, 1984) p. 153.

    Google Scholar 

  19. G.A. Somorjai, K.S. Hwang and J.S. Parker, Top. Catal. this issue.

  20. J.H. Wilson and G.P.M. de Groot, J. Phys. Chem. 99 (1995) 7860.

    Google Scholar 

  21. J.J.C. Geerlings, J.H. Wilson, G.J. Kramer, H.P.C.E. Kuipers, A. Hoek and H.M. Huisman Appl. Catal., A: Gen. 186 (1999) 27.

    Google Scholar 

  22. H. Pichler and H. Buffleb, Brennstoff-Chemie 21 (1940) 273.

    Google Scholar 

  23. H. Pichler and H. Schulz, Chem.-Ing.-Tech. 42 (1970) 1162.

    Google Scholar 

  24. H. Pichler, personal communication.

  25. H. Schulz, M. Claeys and S. Harms, Stud. Surf. Sci. Catal. 107 (1997) 193.

    Google Scholar 

  26. P. Albers, H. Angert, G. Prescher, K. Seybold and St. Parker, Chem. Commun. (1999) 1619.

  27. C.S. Kellner and A.T. Bell, J. Catal. 70 (1981) 418.

    Google Scholar 

  28. H. Schulz and M. Claeys, Appl. Catal., A: Gen. 186 (1999) 91.

    Google Scholar 

  29. F. Fischer and H. Tropsch, Brennstoff-Chemie 7 (1926) 97.

    Google Scholar 

  30. P. Biloen, J.N. Helle and W.M.H. Sachtler, J. Catal. 58 (1979) 95.

    Google Scholar 

  31. A.T. Bell, Catal. Rev.-Sci. Eng. 23 (1981) 203.

    Google Scholar 

  32. P. Winslow and A.T. Bell, J. Catal. 91 (1985) 142.

    Google Scholar 

  33. S. Roginski, Proc. 3rd Congr. on Catalysis (Amsterdam, 1965) p. 939.

  34. A. Sternberg and I. Wender, Proc. Intern. Conf. Coordination Chem., London (The Chemical Society, London, 1959) p. 53.

    Google Scholar 

  35. Y.T. Eidus, Russ. Chem. Rev. 36(5) (1967) 338.

    Google Scholar 

  36. H. Schulz and H.D. Achtsnit, Revista Portuguesa de Quimica (1977) 317.

  37. V. Ponec, W.L. van Dijk and J.A. Groenewegen, J. Catal. 45 (1976) 277.

    Google Scholar 

  38. A. Behr, Organometallic Complexes and Homogeneous Catalysis, Ullmann's Encyclopedia of Industrial Chemistry, 6th ed. Vol. 24 (Wiley-VHC, Weinheim, 2003) p. 429.

    Google Scholar 

  39. H. Schulz and M. Claeys, Appl. Catal., A: Gen. 186 (1999) 71.

    Google Scholar 

  40. E. Iglesia, S.C. Reyes and R.J. Madon, J. Catal. 129 (1991) 238.

    Google Scholar 

  41. S. Roesch, Dissertation (Universitaet Karlsruhe, Karlsruhe, 1980).

    Google Scholar 

  42. H. Schulz and Zh. Nie, Stud. Surf. Sci. Catal. 130 (2000) 1145.

    Google Scholar 

  43. E. van Steen and H. Schulz, Appl. Catal., A: Gen. 186 (1999) 309.

    Google Scholar 

  44. R.B. Anderson, The Fischer-Tropsch Synthesis (Academic Press Inc., New York, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, H. Major and Minor Reactions in Fischer–Tropsch Synthesis on Cobalt Catalysts. Topics in Catalysis 26, 73–85 (2003). https://doi.org/10.1023/B:TOCA.0000012988.86378.21

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000012988.86378.21

Navigation