Skip to main content
Log in

The Genetic Basis of Malathion Resistance in Housefly (Musca domestica L.) Strains From Turkey

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Organophosphate insecticide (parathion/diazinon) resistance in housefly (Musca domestica L.) is associated with the change in carboxylesterase activity. The product of MdαE7 gene is probably playing a role in detoxification of xenobiotic esters. In our research, we have isolated, cloned and sequenced the MdαE7 gene from five different Turkish housefly strains. High doses of malathion (600 μg/fly) were applied in a laboratory environment for one year to Ceyhan1, Ceyhan2, Adana, and Ankara strains while no insecticide treatment was performed in the laboratory to Kirazli strain. Trp251 → Ser substitution was found in the product of MdαE7 gene in all malathion-resistant and Kirazli stocks. In addition, we checked the malathion carboxylesterase (MCE), percent remaining activities in acetylcholinesterase (AChE), glutathion-S-transferase (GST), and general esterase activities in all five strains used in this study. In comparing with universal standard sensitive control WHO, a high level of MCE and GST activities were observed while lower level of general esterase activities was detected in the tested strains. In addition, a higher percent remaining activities in AChE than WHO susceptible strain were observed in all malathion-resistant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lockridge, O., Blong, R.M., Masson, P.,et al.,A single amino acid substitution,Gly117 → His,Confers Phosphotriesterase (Organophosphorus Acid Anhydride Hydrolase)Activity on Human Butyrylcholinesterase,Biochemistry, 1997,vol.31,pp.991–997.

    Google Scholar 

  2. Claudianos, C., Crone, E., Coppin, C.,et al.,A Genomics Perspective on Mutant Aliesterases and Metabolic Resistance to Organophosphate,Agrochemical Resis-tance:Extent,Mechanism and Detection,Marchall, C.J. and Yamaguchi, I.,Eds.,WA (USA): Am.Chem.Soc., 2002,pp.90–101.

    Google Scholar 

  3. Campbell, P.M., Newcomb, R.D., Russell, R.J.,and Oakeshott, J.G.,Two Different Amino Acid Substitutions in the Ali-Esterase,E3,Confer Alternative Types of Organophosphorus Insecticide Resistance in the Sheep Blowfly,Lucilia cuprina,Insect Biochem.Mol. Biol.,1998,vol.28,pp.139–150.

    Google Scholar 

  4. Campbell, P.M., Trott, J.F., Claudianos, C.,et al.,Biochemistry of Esterases Associated with Organophosphate Resistance in Lucilia cuprina with Comparisons to Putative Orthologues in Other Diptera,Biochem.Genet., 1997,vol.35,pp.17–40.

    PubMed  Google Scholar 

  5. Devonshire, A.L.and Field, L.M.,Gene Amplification and Insecticide Resistance,Annu.Rev.Entomol.,1991, vol.36,pp.1–23.

    PubMed  Google Scholar 

  6. Hemingway, J.,The Molecular Basis of Two Contrasting Metabolic Mechanisms of Insecticide Resistance,Insect Biochem.Mol.Biol.,2000,vol.30,pp.1009–1015.

  7. Brownlie, J.,The Evolution of Diazinon Resistance Alleles,and Their Impact on the Genetic Diversity of the α-Esterase Cluster of the Common Housefly,Musca domestica,Honors Thesis, Canberra: Austral.Nat.Univ., 1996.

  8. Claudianos, C., Russell, R.J.,and Oakeshott, J.G.,The Same Amino Acid Substitution in Orthologous Esterases Confers Organophosphate Resistance on the Housefly and a Blowfly,Insect Biochem.Mol.Biol.,1999,vol.29, pp.675–686.

    PubMed  Google Scholar 

  9. Campbell, P.M., Yen, J.L.,and Masoumi, A.,Cross-Resistance Patterns among Lucilia cuprina (Diptera:Calliphoridae)Resistant to Organophosphorus Insecticides, J.Economic Entomol.,1998,vol.91,no.2,pp.367–375.

    Google Scholar 

  10. Oakeshott, J.G., Claudianos, C., Russell, R.J.,and Robin, G.C.,Carboxyl/Cholinesterases:A Case Study of the Evolution of a Successful Multigene Family, BioEssays, 1999,vol.21,pp.1031–1042.

    PubMed  Google Scholar 

  11. Newcomb, R.D., Campbell, P.M., Russell, R.J.,and Oakeshott, J.G.,cDNA Cloning,Baculovirus Expression and Kinetic Properties of the Esterase,E3,Involved in Organophosphorus Insecticide Resistance in Lucila cuprina,Insect Biochem.Mol.Biol.,1996,vol.27, pp.15–25.

    Google Scholar 

  12. Newcomb, R.D., Campbell, P.M., Ollis, D.L.,et al., A Single Amino Acid Substitution Converts a Carboxylesterase to an Organophosphorus Hydrolase and Confers Insecticide Resistance on a Blowfly,Proc.Natl.Acad.Sci.USA, 1997,vol.94,pp.7464–7468.

    PubMed  Google Scholar 

  13. Oppenoorth, F.J.and Van Asperen, K.,Allelic Genes in the Housefly Producing Modified Enzymes That Cause Organophosphate Resistance,Science, 1960,vol.132, pp.298–299.

    PubMed  Google Scholar 

  14. Clark, A.G.and Shamaan, N.A.,Evidence That DDT-Dehydrochlorinase from the Housefly Is a Glutathione S-Transferase,Pesticide Biochem.Physiol.,1984,vol.22, pp.249–261.

    Google Scholar 

  15. Zhou, H.A.and Syvanen, M.,A Complex Glutathione Transferase Gene Family in the Housefly Musca domestica,Mol.Gen.Genet.,1997,vol.256,pp.187–194.

    PubMed  Google Scholar 

  16. Hemingway, J., Miyamoto, J.,and Herath, P.R.,A Possible Link between Organophosphorus and DDT Insecticide Resistance Genes in Anopheles:Supporting Evidence from Fenitrothion Metabolism Studies,Pesticide Biochem.Physiol.,1991,vol.39,pp.49–56.

    Google Scholar 

  17. Wang, J., McCommas, S.,and Syvanen, M.,Molecular Cloning of a Glutathione S-Transferase Overproduced in an Insecticide Resistant Strain of the Housefly (Musca domestica ),Mol.Gen.Genet.,1991,vol.277,pp.260–266.

    Google Scholar 

  18. Wei, S.H., Clark, A.G.,and Syvanen, M.,Identification and Cloning of a Key Insecticide Metabolizing Glutathione S-Transferase (MdGST-6A)from a Hyper Insecticide-Resistant Strain of the Housefly Musca domestica,Insect Biochem.Mol.Biol.,2001,vol.31,pp.1145–1153.

    PubMed  Google Scholar 

  19. Grant, D.F.and Hammock, D.D.,Genetics and Molecular Evidence for a Transacting Regulatory Locus Controlling Glutathione S-Transferase-2 Expression in Aedes aegyptii,Mol.Gen.Genet.,1992,vol.234,pp.169–176.

    PubMed  Google Scholar 

  20. Oppenoorth, F.J.,Biochemistry of Insecticide Resistance,Pesticide Biochem.Physiol.,1984,vol.22, pp.187–193.

  21. Devonshire, A.L.and Moores, G.D.,Different Forms of Insensitive Acetylcholinesterase in Insecticide Resistant House Flies (Musca domestica ),Pesticide Biochem. Physiol.,1984,vol.21,pp.336–340.

    Google Scholar 

  22. Moores, G.D., Devonshire, A.L.,and Denholm, I., A Microtitre Plate Assay for Characterizing Insensitive Acetylcholinesterase Genotypes of Insecticide-Resistant Insects,Bull.Entomol.Res.,1988,vol.78,pp.537–544.

    Google Scholar 

  23. Kozaki, T., Shono, T., Tomita, T.,and Kono, Y.,Fenitroxon Insensitive Acetylcholinesterases of the Housefly,Musca domestica, Associated with Point Mutations, Insect Biochem.Mol.Biol.,2001,vol.31,pp.991–997.

    PubMed  Google Scholar 

  24. Chen, Z., Newcomb, R., Forbes, E.,et al.,The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly,Lucilia cuprina,Insect Biochem.and Mol.Biol.,2001,vol.31,pp.805–816.

    Google Scholar 

  25. Charpentier, A., Menozzi, P., Veronique, M.,et al., A Method to Estimate Acetylcholinesterase Active Sites and Turnover in Insects,Anal.Biochem.,2000,vol.285, pp.76–81.

    PubMed  Google Scholar 

  26. Yao, H., Chuanling, Q., Williamson, M.S.,and Devonshire, A.L.,Characterization of the Acetylcholinesterase Gene from Insecticide Resistant Houseflies (Musca domestica ),Chinese J.Biotechnol.,1997,vol.13,pp.177–183.

    Google Scholar 

  27. Claudianos, C.,The Evolution of α-Esterase Mediated Organophosphate Resistance in Musca domestica,PhD Thesis,Canberra: Austral.Nat.Univ.,1999.

  28. Bender, W., Spierer, P.,and Hogness, D.S.,Chromosomal Walking and Jumping to Isolate DNA from theAce and rosy Loci and bithorax Complex in Drosophila melanogaster,J.Mol.Biol.,1983,vol.168,pp.17–33.

    PubMed  Google Scholar 

  29. Sambrook, J., Fritch, E.F.,and Maniatis, T.,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor, New York: Cold Spring Harbor Lab.,1989.

    Google Scholar 

  30. Habig, W.H., Pabst, M.J.,and Jakobi, B.W.,Glutathione S-Transferases,J.Biol.Chem.,1974,vol.249,pp.7130–7139.

    PubMed  Google Scholar 

  31. Gomori, G.,Human Esterases,J.Lab.Clin.Med.,1953, vol.42,pp.445–453.

  32. Bradford, M.M.,A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein–Dye Binding,Anal.Biochem.,1976,vol.72,pp.248–254.

  33. Devereux, J., Haeberli, P.,and Smithies, O.,A Comprehensive Set of Sequence Analysis Programs for the Vax, Nucleic Acids Res.,1984,vol.12,pp.387–395.

    PubMed  Google Scholar 

  34. Cygler, M., Schrag, J.D., Sussman, J.L.,et al.,Relationship between Sequence Conservation and Three-Dimensional Structure in a Large Family of Esterases,Lipases and Related Proteins,Protein Sci.,1993,no.2,pp.366–382.

    PubMed  Google Scholar 

  35. Robin, C., Russell, R.J., Medveczky, K.M.,and Oakeshott, J.G.,Duplication and Divergence of the Genes of the áα-Esterase Cluster of Drosophila melanogaster,J.Mol. Evol.,1996,vol.43,pp.241–252.

    PubMed  Google Scholar 

  36. Feyereisen, R.,Insect P450 Enzymes,Annu.Rev.Entomol.,1999,vol.44,pp.507–533.

  37. Plapp, F.W.,The Genetic Basis of Insecticide Resistance in the Housefly:Evidence That a Single Locus Plays a Major Role in Metabolic Resistance to Insecticides,Pesticide Biochem.Physiol.,1984,vol.22,pp.194–201.

  38. Franciosa, H.and Berge, J.B.,Glutathione S-Transferase in Housefly Musca domestica L.:Location of GST-1 and GST-2 Families,Insect Biochem.Mol.Biol.,1995,vol. 25,pp.311–317.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tas¸kin, V., Kence, M. The Genetic Basis of Malathion Resistance in Housefly (Musca domestica L.) Strains From Turkey. Russian Journal of Genetics 40, 1215–1222 (2004). https://doi.org/10.1023/B:RUGE.0000048663.17417.97

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUGE.0000048663.17417.97

Keywords

Navigation