Skip to main content
Log in

Trickling Filters and Biofilm Reactor Modelling

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

Tricking filters are biofilm reactors commonly used for biological removal of nitrogen and organic matter. A review of published and unpublished material on the function, microbiology, design and operation of trickling filters is given. This is followed by more general dynamic biofilm reactor modelling, i.e. models for rotating biological contactors, different types of biofilters, moving beds as well as trickling filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson OE & Davies G (1984)Analysis of process factors controlling performance of plastic bio-packing,Proceedings of 57th Annual Water Pollution Control Federation Conference,New Orleans

  • Amy PS, Pauling C & Morita RY (1983)Starvation-survival processes of a marine vibrio.Appl.Environ.Microbiol. 45(3):1041–1048

    Google Scholar 

  • Andersson B, Aspegren H, Parker DS & Lutz MP (1994)High rate nitrifying trickling filters.Water Sci.Technol. 29(10–11) 47–52

    Google Scholar 

  • Biesterfeld S, Figueroa L, Hernandez M & Russel P (2001) Quantification of nitrifying bacterial populations in a fullscale nitrifying trickling filter using fluorescent in situ hybridization.Water Environ.Res.73(3):329–338

    Google Scholar 

  • Bishop PL, Zhang TC & Fu YC (1995)Effects of biofilm structure,microbial distributions and mass transport on biodegradation processes.Water Sci.Technol.30(1):143–152

    Google Scholar 

  • Boller M & Gujer W (1986)Nitrification in tertiary trickling lters followed by deep-bed filters.Water Res.20(11):1363–1373

    Google Scholar 

  • Boller M, Tschui M & Gujer W (1997)Effects on transient nutrient concentrations in tertiary biofilm reactors.Water Sci.Technol.36(1):101–109

    Google Scholar 

  • Burrell PC, Keller J & Blackall LL (1998)Microbiology of a nitrite-oxidizing bioreactor.Appl.Environ.Microbiol.64(5): 1878–1883

    Google Scholar 

  • Dalsgaard T & Revenspech NP (1992)Regulating factors of denitrification in trickling lter bio lms as measured with the oxygen nitrous-oxide microsensor.FEMS Microbiol.Ecol. 101(3):151–164

    Google Scholar 

  • Finlayson BA (1972)The Method of Weighted Residuals and Variational Principles.Academic Press, New York

    Google Scholar 

  • Fischer SD (1990)Complex Variables.Mathematics Series.2nd edn.Wadsworth & Brooks/Cole. Pacific Grove,California

    Google Scholar 

  • Froment GF & Bischoff KG (1979)Chemical Reactor Analysis and Design.Wiley, New York

    Google Scholar 

  • Gabriel D & Deshusses MA (2003)Retro fitting existing chemical scrubbers to biotrickling filters for H2s emission control,Proceedings of the National Academy of Sciences of the United States of America 100(11):6308–6312

    Google Scholar 

  • Grady Jr, CPL & Lim H (1980)Biological Wastewater Treatment.Theory and Applications.Marcel Dekker, New York

    Google Scholar 

  • Gujer W & Wanner O (1990)Modelling mixed population bio films.In:Characklis WG & Marshall KC,Biofilms (Eds) (pp.397–443),Wiley, New York

    Google Scholar 

  • Hawkes HA (1963)The Ecology of Wastewater Treatment (pp 82–89).Macmillan Co., New York

    Google Scholar 

  • Higgins IJ & Burns RG (1975)The Chemistry and Microbiology of pollution.Academic Press, London

    Google Scholar 

  • Horn H & Hempel DC (1997a)Growth and decay in an auto-/ heterotrophic bio film.Water Res.31(9):2243–2252

    Google Scholar 

  • Horn H & Hempel DC (1997b)Substrate utilization and mass transfer in an autotrophic biofilm system:Experimental results and numerical simulation.Biotechnol.Bioeng.53: 363–377

    Google Scholar 

  • Kissel JC, McCarty PL & Street RL (1984)Numerical simulation of mixed culture bio film.J.Environ.Eng. 110(2):393–411

    Google Scholar 

  • Kjelleberg SK, Humphrey BH & Marshall KC (1982)Effects of interfaces on small,starved marine bacteria.Appl.Environ. Microbiol.43(5):1166–1172

    Google Scholar 

  • Lekang OI & Kleppe H (2000)Efficiency of nitri fication in trickling lters using different filter media.Aquacult.Eng. 21(3),181–199

    Google Scholar 

  • Lens PN, Massone A, Rozzi A & Verstraete W(1995a)Effect of sulfate concentration and scraping on aerobic fixed bio film reactors.Water Res.29:857–870

    Google Scholar 

  • Lens PN, De Poorter MP, Cronenberg CC & Verstraete W (1995b)Sulfate reducing and methane producing bacteria in aerobic wastewater treatment systems.Water Res.29:871–880

    Google Scholar 

  • Logan BE & Wagenseller GA (2000)Molecular size distribution of dissolved organic matter in wastewater transformed by treatment in a full-scale trickling filter.Water Environ. Res.72(3):277–281

    Google Scholar 

  • Liu D & Liptak B (2000)Wastewater Treatment,Lewis publishers for CRC

  • Lobo VMM & Quaresma JL (1989)Handbook of Electrolyte Solutions:Part B.Physical Science Data 41.Elsevier, Amsterdam

    Google Scholar 

  • Lydmark P, Kokalj S, Wik T, Hermansson M, Sörensson F & Lindgren PE (in preparation)Changes in the ammonia-oxidizing bacterial community in a full-scale trickling filter determined by 16S rDNA analysis

  • Mattsson A & Rane A (1993) Nitri fikation i biobädd – försök utförda december 1990 – augusti 1992.Report 1993:1. GRYAAB. Karl IX väg, 417 22 Göteborg, Sweden

  • Metcalf & Eddy (2003)Wastewater Engineering.McGraw Hill, 4th edn

  • Mobarry BK, Wagner M, Urbain V, Rittmann B & Stahl DA (1996)Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria.Appl.Environ. Microbiol.62(6):2156–2162

    Google Scholar 

  • Nevalainen I, Kostyal E, Nurmiaho-Lassila E.L, Puhakka JA & Salkinoja-Salonen M.S.(1993)Dechlorination of 2,4,6-trichlorophenol by a nitrifying bio film.Wat.Res.27(5),757–757

    Google Scholar 

  • Novitsky JA & Morita RY (1977)Survival of a psychrophilic marine vibrio under long-term nutrient starvation.Appl. Environ.Microbiol.33(3):635–641

    Google Scholar 

  • Nyström T (1989)Macromolecular synthesis and turnover during adaption to energy and nutrient starvation by a marine vibrio sp.PhD Thesis,University of Gothenburg, Sweden

    Google Scholar 

  • Okabe S, Hirata K & Watanabe Y (1995)Dynamic changes in spatial microbial distribution in mixed-population bio films: Experimental results and model simulation.Water Sci. Technol.32(8):67–74

    Google Scholar 

  • Okabe S, Satoh H & Watababe Y (1999)In situ analysis of nitrifying bio films as determined by in situ hybridization and the use of microelectrodes.Appl.Environ.Microbiol.65: 3182–3191

    Google Scholar 

  • Parker D, Lutz M & Pratt AM (1990)New trickling filter applications in the USA Water Sci.Technol.22(1/2):215–226

    Google Scholar 

  • Parker D, Lutz M, Dahl R & Bernkopf S (1989)Enhancing reaction rates in nitrifying trickling filters through bio film control.J.WPCF 61(5),618–631

    Google Scholar 

  • Persson F, Wik T, Sörensson F & Hermansson M (2002) Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter.Water Res.36(6):1439–1448

    Google Scholar 

  • Riemer M, Holm Kristensen G & Harremoes P (1980) Residence time distribution in submerged bio filters.Water Res.14(8):949–958

    Google Scholar 

  • Rittmann BE (1985)The effect of load fluctuations on the effluent concentration produced by fixed-film reactors.Water Sci.Technol.17:45–52

    Google Scholar 

  • Rittmann BE (1989)Mathematical modeling of fixed film growth.In:Chapman P (Ed),Dynamic Modeling and Expert Systems in Wastewater Engineering (pp 39–57).Lewis Publishers, USA

    Google Scholar 

  • Rittmann BE & Manem JA (1992)Development and experimental evaluation of a steady-state,multispecies bio film model.Biotechnol.Bioeng.39:914–922

    Google Scholar 

  • Rowan AK, Snape JR, Fearniside D, Barer MR, Curtis TP & Heard IM (2003)Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol.Ecol.43(2):195–206

    Google Scholar 

  • Rusten B, Hem LJ & Ødegaard H (1995a)Nitrification of municipal wastewater in moving-bed bio film reactors.Water Environ.Res.67(1):75–86

    Google Scholar 

  • Rusten B Hem LJ & Ødegaard (1995b)Nitrogen removal from dilute wastewater in cold climate using moving-bed bio film reactors.Water Environ.Res.67(1):65–74

    Google Scholar 

  • Saez PB & Rittmann BE (1988)Improved pseudanalytical solution for steady-state bio film kinetics.Biotechnol.Bioeng. 32:379–385

    Google Scholar 

  • Seguret F, Racault Y & Sardin M (2000)Hydrodynamic behaviour of full scale trickling filters,Water Res.34(5): 1551–1558

    Google Scholar 

  • Stevens DK, Berthouex PM & Chapman TW (1986)The effect of tracer diffusion in bio film on residence time distributions. Water Res.20(3):369–375

    Google Scholar 

  • Stevenson LH (1978)A case for bacterial dormancy in aquatic systems.Microbiol.Ecol.4:127–133

    Google Scholar 

  • Suschka J (1987)Hydraulic performance of percolating biological filters and consideration of oxygen transfer.Water Res.21(8):865–873

    Google Scholar 

  • Timpany PL & Harrison JR (1989)Trickling filter solids contact performance from the operators perspective.In: Proceedings of 62th Annual Water Pollution Control Federation Conference,San Fransisco

  • Tseng DH, Guo GL, Chang CH & Huang SL (2001)Removal of toluene in gas streams by brous-bed trickling filter. Environ.Technol.22(1):39–46

    Google Scholar 

  • Wagner M, Rath G, Amann RI, Koops HP & Schleifer KH (1995)In situ identi cation of ammonia-oxidizing bacteria. System.Appl.Microbiol.18(2):251–264

    Google Scholar 

  • Vanhooren H (2001)Modelling for optimisation of bio film wastewater treatment processes:A complexity compromise. PhD thesis,University of Gent.(http://biomath.ugent.be/ publications/download/)

  • Wanner O & Gujer W (1984)Competition in bio films.Water Sci.Technol.17:27–44

    Google Scholar 

  • Wanner O & Gujer W (1986)A multispecies bio lm model. Biotechnol.Bioeng.18:314–328

    Google Scholar 

  • Wanner O & Reichert P (1996)Mathematical modeling of mixed-culture bio films.Biotechnol.Bioeng.49:172–184

    Google Scholar 

  • Watanabe Y, Bravo HE & Nishidome K (1982)Simulation of nitri fication and its dynamics in a rotating biological contactor.Water Sci.Technol.14:811–832

    Google Scholar 

  • Wik T & Lindeborg C (1994) Modelling the Dynamics of a Trickling Filter for Waste Water Treatment.Proc of the 3rd IEEE Conference on Control Applications, (pp 1035–1040), Glasgow, UK, Aug 1994

  • Wik T, Mattsson A, Hansson E & Niklasson C (1995) Nitri fication in a tertiary trickling filter at high hydraulic loads–pilot plant operation and mathematical modelling. Water Sci.Technol.32(8):185–192

    Google Scholar 

  • Wik T & Breitholtz C (1996) Steady state solution of a twospecies bio film problem.Biotechnol Bioeng.50(6):675–686

    Google Scholar 

  • Wik T & Breitholtz C (1998)Rational Transfer Functions for Bio film Reactors.AIChE Journal 44(12):2647–2657

    Google Scholar 

  • Wik T (1999a)On modeling the dynamics of fixed bio film reactors.PhD thesis.Chalmers University of Technology. ISBN 91-7197-797-X.(http://www.s2.chalmers.se/publications)

  • Wik T (1999b)Adsorption and Denitrification in Nitrifying Trickling Filters.Water Res.33(6):1500–1508

    Google Scholar 

  • Wik T (1999c)Rational Transfer Function Models for Nitrifying Trickling Filters.Water Sci.Technol.39(4):121–128

    Google Scholar 

  • Wik T (2000)Strategies to improve the efficiency of tertiary nitrifying trickling filters.Water Sci.Technol.41(4),477–485

    Google Scholar 

  • Wik T & Linden B (2004)Modeling,control and simulation of recirculating aquaculture systems.In:9th IFAC Symposium on Computer Applications in Biotechnology,Nancy,France, March 2004

  • Wik T, Göransson E & Breitholtz C (in preparation)Low order approximations of continuously stirred bio film reactors with Monod kinetics.Biotechnol.Bioeng

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wik, T. Trickling Filters and Biofilm Reactor Modelling. Re/Views in Environmental Science and Bio/Technology 2, 193–212 (2003). https://doi.org/10.1023/B:RESB.0000040470.48460.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RESB.0000040470.48460.bb

Navigation