Skip to main content
Log in

Insights into the stress response and sulfur metabolism revealed by proteome analysis of a Chlorobium tepidum mutant lacking the Rubisco-like protein

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A significant fraction of the proteome of Chlorobium tepidum is altered in a mutant strain of the green sulfur bacterium C. tepidum (Ω::RLP) lacking the Rubisco-like protein (RLP). Additionally, a number of stress proteins display altered abundance or migration in strain Ω::RLP, including a thioredoxin, a putative Hsp20 family chaperonin, and GroEL. Changes in protein abundance are closely correlated to mRNA abundance in the case of two other stress proteins, a thiol-specific antioxidant protein homolog (Tsa/AhpC) and an iron only superoxide dismutase (Fe-SOD). Strain Ω::RLP is more resistant to hydrogen peroxide exposure than strain WT2321, providing evidence that the stress proteins are functional. Strain Ω::RLP is also defective in thiosulfate oxidation, but is able to oxidize sulfide as well as the wild-type strain. Based on studies with periplasm-enriched extracts of strain Ω::RLP, the loss of thiosulfate oxidation capability correlates with undetectable levels of the SoxY protein, a component of the predicted thiosulfate oxidation complex. These results provide further indications that sulfur oxidation capacity and the response to stress are linked in C. tepidum, with the RLP playing a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K (1987) Current Protocols In Molecular Biology. Green Publishing Associates/Wiley Interscience, New York

    Google Scholar 

  • Bartsch R, Newton G, Sherril C and Fahey R (1996) Glutathione amide and its perthiol in anaerobic sulfur bacteria. J Bacteriol 178: 4742–4746

    PubMed  CAS  Google Scholar 

  • Brune D (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975: 189–221

    PubMed  CAS  Google Scholar 

  • Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 847–870. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Casagrande S, Bonetto V, Fratelli M, Gianazza E, Eberini I, Massignan T, Salmona M, Chang G, Holmgren A and Ghezzi P (2002) Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci USA 99: 9745–9749

    Article  PubMed  CAS  Google Scholar 

  • de Jong WW, Leunissen JA and Voorter CE (1993) Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10: 103–126

    PubMed  CAS  Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vemathevan J, Khouri H, White O, Gruber TM, Ketchum K, Venter JC, Tettelin H, Bryant D and Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99: 9509–9514

    Article  PubMed  CAS  Google Scholar 

  • Ellis R (1979) The most abundant protein in the world. Trends Biochem Sci 4: 241–244

    Article  CAS  Google Scholar 

  • Ezaki S, Maeda N, Kishimoto T, Atomi H and Imanaka T (1999) Presence of a structurally novel type ribulosebisphophate carboxylase/oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. J Biol Chem 274: 5078–5082

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC, Buschbacher RM and Newton GL (1987) The evolution of glutathione metabolism in phototrophic microorganisms. J Mol Evol 25: 81–88

    Article  PubMed  CAS  Google Scholar 

  • Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F and Miclet E et al. (2002)Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes.Proc Natl Acad Sci USA99:3505–3510

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S and Prinz H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182: 4677–4687

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A and Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67: 2873–2882

    Article  PubMed  CAS  Google Scholar 

  • Gruber TM and Bryant DA (1998) Characterization of the group 1 and group 2 sigma factors of the green sulfur bacterium Chlorobium tepidum and the green non-sulfur bacterium Chloroflexus aurantiacus. Arch Microbiol 170: 285–296

    Article  PubMed  CAS  Google Scholar 

  • Grundy FJ and Henkin TM (1998) The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol 30: 737–749

    Article  PubMed  CAS  Google Scholar 

  • Hanson TE and Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98: 4397–4402

    Article  PubMed  CAS  Google Scholar 

  • Ide T, Baumer S and Deppenmeier U (1999) Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Go1: identification of two proton-translocating segments. J Bacteriol 181: 4076–4080

    PubMed  CAS  Google Scholar 

  • Kim KK, Kim R and Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394: 595–599

    Article  PubMed  CAS  Google Scholar 

  • King KY, Horenstein JA and Caparon MG (2000) Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J Bacteriol 182: 5290–5299

    Article  PubMed  CAS  Google Scholar 

  • Markwell MA, Haas SM, Bieber LL and Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87: 206–210

    Article  PubMed  CAS  Google Scholar 

  • Mitsumoto A, Takeuchi A, Okawa K and Nakagawa Y (2002) A subset of newly synthesized polypeptides in mitochondria from human endothelial cells exposed to hydroperoxide stress. Free Radic Biol Med 32: 22–37

    Article  PubMed  CAS  Google Scholar 

  • Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M and Chamnongpol S (1998) Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J Bacteriol 180: 2636–2643

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay B, Johnson E and Ascano M (1999) Conditions for vigorous growth on sulfide and reactor-scale cultivation protocols for the thermophilic green sulfur bacterium Chlorobium tepidum. Appl Environ Microbi 65: 301–306

    CAS  Google Scholar 

  • Murphy BA, Grundy FJ and Henkin TM (2002) Prediction of gene function in methylthioadenosine recycling from regulatory signals. J Bacteriol 184: 2314–2318

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996)TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358

    PubMed  CAS  Google Scholar 

  • Paschinger H, Paschinger J and Gaffron H (1974) Photochemical disproportionation of sulfur into sulfide and sulfate by Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 96: 341–351

    Article  CAS  Google Scholar 

  • Pott AS and Dahl C (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144: 1881–1894

    Article  PubMed  CAS  Google Scholar 

  • Quentmeier A and Friedrich CG (2001) The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett 503: 168–172

    Article  PubMed  CAS  Google Scholar 

  • Rince A, Giard JC, Pichereau V, Flahaut S and Auffray Y (2001) Identification and characterization of gsp65, an organic hydroperoxide resistance (ohr) gene encoding a general stress protein in Enterococcus faecalis. J Bacteriol 183: 1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Rother D, Henrich HJ, Quentmeier A, Bardischewsky F and Friedrich CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183: 4499–4508

    Article  PubMed  CAS  Google Scholar 

  • Saibil H (2000) Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. Curr Opin Struct Biol 10: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Sekowska A and Danchin A (2002) The methionine salvage pathway in Bacillus subtilis. BMC Microbiol 2: 8.

    Article  PubMed  Google Scholar 

  • Setzke E, Hedderich R, Heiden S and Thauer RK (1994) H2:heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum. Composition and properties. Eur J Biochem 220: 139–148

    Article  PubMed  CAS  Google Scholar 

  • Shahak Y, Arieli B, Padan E and Hauska G (1992) Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett 299: 127–130

    Article  PubMed  CAS  Google Scholar 

  • Sherman M and Goldberg A (1992) Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation. Nature 357: 167–169

    Article  PubMed  CAS  Google Scholar 

  • Soto A, Allona I, Collada C, Guevara MA, Casado R, Rodriguez-Cerezo E, Aragoncillo C and Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120: 521–528

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu Mand Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27: 407–415

    Article  PubMed  CAS  Google Scholar 

  • Tabita F (1999) Microbial ribulose-1,5-bisphosphate carboxylase/ oxygenase: a different perspective. Photosynth Res 60: 1–28

    Article  CAS  Google Scholar 

  • Takemoto T, Zhang QM and Yonei S (1998) Different mechanisms of thioredoxin in its reduced and oxidized forms in defense against hydrogen peroxide in Escherichia coli. Free Radic Biol Med 24: 556–562

    Article  PubMed  CAS  Google Scholar 

  • X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tong S, Porco A, Isturiz T and Conway T (1996) Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism. J Bacteriol 178: 3260–3269

    PubMed  CAS  Google Scholar 

  • Truper HG and Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae I. Quantitative measurements in growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30: 225–238

    Article  Google Scholar 

  • Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard N-U, Inoue-Sakamoto K, Baker MA, Sotak A and Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Biochemistry 41: 4358–4370

    Article  PubMed  CAS  Google Scholar 

  • Verte F, Kostanjevecki V, De Smet L, Meyer TE, Cusanovich MA and Van Beeumen JJ (2002) Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola. Biochemistry 41: 2932–2945

    Article  PubMed  CAS  Google Scholar 

  • Wahlund TM and Madigan MT (1995) Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 177: 2583–2588

    PubMed  CAS  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp-nov. ArchMicrobiol 156: 81–90

    CAS  Google Scholar 

  • Waters ER (1995) The molecular evolution of the small heat-shock proteins in plants. Genetics 141: 785–795

    PubMed  CAS  Google Scholar 

  • Watson GMF, Yu J-P and Tabita FR (1999) Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic archaea. J Bacteriol 181: 1569–1575

    PubMed  CAS  Google Scholar 

  • Westley J (1987)Thiocyanate and thiosulfate.Meth Enzymol143:22–25

    Article  PubMed  CAS  Google Scholar 

  • Wodara C, Kostka S, Egert M, Kelly DP and Friedrich CG (1994) Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17. J Bacteriol 176: 6188–6191

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Higuchi M, Poole LB and Kamio Y (2000) Role of the dpr product in oxygen tolerance in Streptococcus mutans. J Bacteriol 182: 3740–3747

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Sun D and Davidson VL (1999) Localization of periplasmic redox proteins of Alcaligenes faecalis by a modified general method for fractionating gram-negative bacteria. J Bacteriol 181: 6540–6542

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Robert Tabita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, T.E., Tabita, F.R. Insights into the stress response and sulfur metabolism revealed by proteome analysis of a Chlorobium tepidum mutant lacking the Rubisco-like protein. Photosynthesis Research 78, 231–248 (2003). https://doi.org/10.1023/B:PRES.0000006829.41444.3d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000006829.41444.3d

Navigation