Skip to main content
Log in

Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Molecular genetics has identified dozens of genes that regulate flower development in Arabidopsis. However, the complexity of flower development suggests that many other genes are yet to be uncovered. To identify floral genes that are expressed at low levels in the flower, we have sequenced 1587 cDNA fragments from a subtractive floral cDNA library. A total of 1222 unique genes represented by these ESTs are distributed on all five chromosomes with similar frequencies as all predicted genes in the genome. Among these, 17 genes were shown to be expressed anywhere for the first time because they were not found in previous EST and full-length cDNA datasets. Furthermore, 724 of the genes revealed by this library were not definitively shown to be expressed in the flower by previous floral EST datasets. In addition, 49 transcriptional regulators, 31 protein kinases, 12 zinc-finger proteins and other signaling proteins were found to be present in floral buds. Moreover, the EST sequences likely extended the transcribed regions of 26 previously annotated genes, and may have uncovered several previously unrecognized genes. To obtain additional clues about possible gene function, we hybridized cDNA microarray with probes derived from wild-type Arabidopsis rosette leaves and floral buds. We estimated that over 50% of genes were expressed at levels lower than 1/30 of the highest detectable signal intensity, indicating that many floral genes are expressed at low levels. Furthermore, 97 genes were found to be expressed at a higher level in the flower than the leaf by the Significance Analysis of Microarray (SAM) method with a 1.0% false discovery rate (FDR). Further RT-PCR analyses of selected genes support the microarray results. We suggest that the genes encoding putative regulatory proteins and at least some proteins with currently unknown functions might play important roles during flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AGI. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Article  Google Scholar 

  • Allen, M., Qin, W., Moreau, F. and Moffatt, B. 2002. Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytokinin metabolism. Physiol. Plant. 115: 56–68.

    Article  CAS  PubMed  Google Scholar 

  • Amagai, M., Ariizumi, T., Endo, M., Hatakeyama, K., Kuwata, C., Shibata, D., Toriyama, K. and Watanabe, M. 2002. Identification of anther-specific genes in a cruciferous model plant, Arabidopsis thaliana, by using a combination of Arabidopsis macroarray and mRNA from Brassica oleracea. Sex. Plant Reprod. 15: 213–220.

    Google Scholar 

  • Azumi, Y., Liu, D., Zhao, D., Li, W., Wang, G., Hu, Y. and Ma, H. 2002. Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO J. 21: 3081–3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazquez, M. 2000. Flower development pathways. J. Cell Sci. 113: 3547–3548.

    CAS  PubMed  Google Scholar 

  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1: 37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capella, A.N., Menossi, M., Arruda, P. and Benedetti, C.E. 2001. COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis. Planta 213: 691–699.

    Article  CAS  PubMed  Google Scholar 

  • Channeliere, S., Riviere, S., Scalliet, G., Szecsi, J., Jullien, F., Dolle, C., Vergne, P., Dumas, C., Bendahmane, M., Hugueney, P. and Cock, J.M. 2002. Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett. 515: 35–38.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Marcus, A., Li, W., Hu, Y., Calzada, J.P., Grossniklaus, U., Cyr, R.J. and Ma, H. 2002. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129: 2401–2409.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Dougherty, E.R. and Bittner, M.L. 1997. Ratio-based decisions and the quantitative analysis of cDNAmicroarray images. J. Biomed. Optics 2: 364–374.

    Article  CAS  Google Scholar 

  • Diatchenko, L., Lau, Y.F., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E.D. and Siebert, P.D. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93: 6025–6030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diatchenko, L., Lukyanov, S., Lau, Y.F. and Siebert, P.D. 1999. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Meth. Enzymol. 303: 349–380.

    Article  CAS  PubMed  Google Scholar 

  • Endo, M., Kokubun, T., Takahata, Y., Higashitani, A., Tabata, S. and Watanabe, M. 2000. Analysis of expressed sequence tags of flower buds in Lotus japonicus. DNA Res. 7: 213–216.

    Article  CAS  PubMed  Google Scholar 

  • Fourgoux-Nicol, A., Drouaud, J., Haouazine, N., Pelletier, G. and Guerche, P. 1999. Isolation of rapeseed genes expressed early and specifically during development of the male gametophyte. Plant Mol. Biol. 40: 857–872.

    Article  CAS  PubMed  Google Scholar 

  • Gamboa, A., Paez-Valencia, J., Acevedo, G.F., Vazquez-Moreno, L. and Alvarez-Buylla, R.E. 2001. Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex. Biochem. Biophys. Res. Commun. 288: 1018–1026.

    Article  CAS  PubMed  Google Scholar 

  • Girke, T., Todd, J., Ruuska, S., White, J., Benning, C. and Ohlrogge, J. 2000. Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124: 1570–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S. and Yoshida, S. 2002. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 130: 1319–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, Q., Ferrandiz, C., Yanofsky, M.F. and Martienssen, R. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125: 1509–1517.

    CAS  PubMed  Google Scholar 

  • Guterman, I., Shalit, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A. and Weiss, D. 2002. Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14: 2325–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofte, H., Desprez, T., Amselem, J., Chiapello, H., Rouze, P., Caboche, M., Moisan, A., Jourjon, M.F., Charpenteau, J.L., Berthomieu, P. et al. 1993. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J. 4: 1051–1061.

    Article  CAS  PubMed  Google Scholar 

  • Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525–529.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Mizukami, Y., Hu, Y. and Ma, H. 1993. Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21: 4769–4776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jofuku, K.D., den Boer, B.G., Van Montagu, M. and Okamuro, J.K. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamalay, J.C. and Goldberg, R.B. 1980. Regulation of structural gene expression in tobacco. Cell 19: 935–946.

    Article  CAS  PubMed  Google Scholar 

  • Kieffer, M. and Davies, B. 2001. Developmental programmes in floral organ formation. Semin. Cell Dev. Biol. 12: 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Lim, C.O., Kim, H.Y., Kim, M.G., Lee, S.I., Chung, W.S., Park, S.H., Hwang, I. and Cho, M.J. 1996. Expressed sequence tags of Chinese cabbage flower bud cDNA. Plant Physiol. 111: 577–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmann, J.U. and Weigel, D. 2002. Building beauty: the genetic control of floral patterning. Dev. Cell 2: 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H. and Deng, X.W. 2001. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13: 2589–2607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel, M.A. and Yanofsky, M.F. 1995. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7: 1763–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeks-Wagner, D.R., Dennis, E.S., Tran Thanh Van, K. and Peacock, W.J. 1989. Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell 1: 25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffatt, B.A., McWhinnie, E.A., Agarwal, S.K. and Schaff, D.A. 1994. The adenine phosphoribosyltransferase-encoding gene of Arabidopsis thaliana. Gene 143: 211–216.

    Article  CAS  PubMed  Google Scholar 

  • Nagai, J., Yamato, K.T., Sakaida, M., Yoda, H., Fukuzawa, H. and Ohyama, K. 1999. Expressed sequence tags from immature female sexual organ of a liverwort, Marchantia polymorpha. DNA Res. 6: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.C., Kang, Y.H., Chun, H.J., Koo, J.C., Cheong, Y.H., Kim, C.Y., Kim, M.C., Chung, W.S., Kim, J.C., Yoo, J.H., Koo, Y.D., Koo, S.C., Lim, C.O., Lee, S.Y. and Cho, M.J. 2002. Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol. Biol. 50: 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Riechmann, J.L. and Meyerowitz, E.M. 1998. The AP2/EREBP family of plant transcription factors. Biol. Chem. 379: 633–646.

    CAS  PubMed  Google Scholar 

  • Roberts, M.R., Foster, G.D., Blundell, R.P., Robinson, S.W., Kumar, A., Draper, J. and Scott, R. 1993. Gametophytic and sporophytic expression of an anther-specific Arabidopsis thaliana gene. Plant J. 3: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Sablowski, R.W. and Meyerowitz, E.M. 1998. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y. and Shinozaki, K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Integr. Genomics 2: 301.

    Article  CAS  Google Scholar 

  • Sessions, A., Yanofsky, M.F. and Weigel, D. 1998. Patterning the floral meristem. Semin. Cell Dev. Biol. 9: 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Shiu, S.H. and Bleecker, A.B. 2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98: 10763–10768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N. and Bowman, J.L. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126: 4117–4128.

    CAS  PubMed  Google Scholar 

  • Smyth, D.R., Bowman, J.L. and Meyerowitz, E.M. 1990. Early flower development in Arabidopsis. Plant Cell 2: 755–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung, Z.R., Chen, L., Moon, Y.H. and Lertpiriyapong, K. 2003. Mechanisms of floral repression in Arabidopsis. Curr. Opin. Plant Biol. 6: 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Taipalensuu, J., Falk, A. and Rask, L. 1996. A wound-and methyl jasmonate-inducible transcript coding for a myrosinaseassociated protein with similarities to an early nodulin. Plant Physiol. 110: 483–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takechi, K., Sakamoto, W., Utsugi, S., Murata, M. and Motoyoshi, F. 1999. Characterization of a flower-specific gene encoding a putative myrosinase binding protein in Arabidopsis thaliana. Plant Cell Physiol. 40: 1287–1296.

    Article  CAS  PubMed  Google Scholar 

  • Takemura, M., Fujishige, K., Hyodo, H., Ohashi, Y., Kami, C., Nishii, A., Ohyama, K. and Kohchi, T. 1999. Systematic isolation of genes expressed at low levels in inflorescence apices of Arabidopsis thaliana. DNA Res. 6: 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Tusher, V.G., Tibshirani, R. and Chu, G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utsugi, S., Sakamoto, W., Murata, M. and Motoyoshi, F. 1998. Arabidopsis thaliana vegetative storage protein (VSP) genes: gene organization and tissue-specific expression. Plant Mol. Biol. 38: 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Weigel, D. 1998. From floral induction to floral shape. Curr. Opin. Plant Biol. 1: 55–59.

    Article  CAS  PubMed  Google Scholar 

  • Xue, J., Jorgensen, M., Pihlgren, U. and Rask, L. 1995. The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution. Plant Mol. Biol. 27: 911–922.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J. and Speed, T.P. 2002. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucl. Acids Res. 30: e15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, D., Yu, Q., Chen, C. and Ma, H. 2001. Genetic control of reproductive meristems. In: M.T. McManus and B. Veit (Eds.) Annual Plant Review: Meristematic Tissues in Plant Growth and Development, Sheffield Academic Press, Sheffield, UK, pp. 89–142.

    Google Scholar 

  • Zhao, D.Z., Wang, G.F., Speal, B. and Ma, H. 2002. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev. 16: 2021–2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zik, M. and Irish, V.F. 2003. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell 15: 207–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Wang, Y., Bowers, C. et al. Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis . Plant Mol Biol 53, 545–563 (2003). https://doi.org/10.1023/B:PLAN.0000019063.18097.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000019063.18097.62

Navigation