Skip to main content
Log in

Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have isolated and characterized a novel giant retroelement, named Ogre, which is over 22 kb long and makes up at least 5% of the pea (Pisum sativum L.) genome. This element can be classified as a Ty3/gypsy-like LTR retrotransposon based on the presence of long terminal repeats (LTRs) and the order of the domains coding for typical retrotransposon proteins. In addition to its extreme length, it has several features which make it unique among the retroelements described so far: (1) the sequences coding for gag and prot proteins are separated from the rt/rh-int domains by several stop codons; (2) the region containing these stop codons is removed from the element transcripts by splicing which results in reconstitution of the complete gag-pol coding sequence; (3) only a part of the transcripts is spliced which probably determines the ratio of translated proteins; (4) the element contains an extra ORF located upstream the gag-pol coding sequences, potentially coding for a protein of 546–562 amino acids with unknown function. The transcriptional activity of the Ogre elements has been detected in all organs tested (leaves, roots, flowers) as well as in wounded leaves and protoplasts. Considering this retroelement's constitutive expression and observed high mutual similarity of the element genomic sequences, it is possible to speculate about its recent amplification in the genomes of pea and other legume plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, S.L., Atkins, J.F. and Gesteland, R.F. 1999. Programmed ribosomal frameshifting: Much ado about knotting! Proc. Natl. Acad. Sci. USA 96: 14177–14179.

    Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Google Scholar 

  • Arkhipova, I.R. 2001. Transposable element in the animal kingdom. Mol. Biol. 35: 157–167.

    Google Scholar 

  • Asante-Appiah, E. and Skalka, A.M. 1997. Molecular mechanisms in retrovirus DNA integration. Antiviral Res. 36: 139–156.

    Google Scholar 

  • Baranyi, M. and Greilhuber, J. 1996. Flow cytometric and Feulgen analysis of genome size variation in Pisum. Theor. Appl. Genet. 92: 297–307.

    Google Scholar 

  • Beguiristain, T., Grandbastien, M.A., Puigdomenech, P. and Casacuberta, J.M. 2001. Three Tnt1 subfamilies show different stress associated patterns of expression in tobacco. Consequences for retrotransposon control and evaluation in plants. Plant Physiol. 127: 212–221.

    Google Scholar 

  • Bénit, L., Dessen, P. and Heidmann, T. 2001. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J. Virol. 75: 11709–11719.

    Google Scholar 

  • Bennetzen, J.L. 1996. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347–353.

    Google Scholar 

  • Bennetzen, J.L. 1998. The structure and evolution of angiosperm nuclear genomes. Curr. Opin. Plant Biol. 1: 103–108.

    Google Scholar 

  • Bennetzen, J.L. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42: 251–269.

    Google Scholar 

  • Bhattacharya, S., Bakre, A. and Bhattacharya, A. 2002. Mobile genetic elements in protozoan parasites. J. Genet. 81: 73–86.

    Google Scholar 

  • Boeke, J.D. and Stoye, J.P. 1997. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: J.M. Coffin, S.H. Hughes and H.E. Varmus (Eds.) Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 343–436.

    Google Scholar 

  • Burd, C.B. and Dreyfuss, G. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621.

    Google Scholar 

  • Chavanne, F., Zhang, D.X., Liaud, M.F. and Cerff, R. 1998. Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/gypsy family highly amplified in pea and other legume species. Plant Mol. Biol. 37: 363–375.

    Google Scholar 

  • Davies, J.F., Hostomska, Z., Hostomsky, Z., Jordan, S.R. and Matthews, D.A. 1991. Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science 252: 88–95.

    Google Scholar 

  • Deininger, P.L. and Batzer, M.A. 2002. Mammalian retroelements. Genome Res. 12: 1455–1465.

    Google Scholar 

  • Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21.

    Google Scholar 

  • Ding, J., Das, K., Hsiou, Y., Sarafianos, S.G., Clark, A.D., Jacobo-Molina, A., Tantillo, C., Hughes, S.H. and Arnold, E. 1998.Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. J. Mol. Biol. 284: 1095–1111.

    Google Scholar 

  • Dorokhov, Y.L., Skulachev, M.V., Ivanov, P.A., Zvereva, S.D., Tjulkina, L.G., Merits, A., Gleba, Y.Y., Hohn, T. and Atabekov, J.G. 2002. Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc. Natl. Acad. Sci. USA 99: 5301–5306.

    Google Scholar 

  • Echenique, V., Stamova, B., Wolters, P., Lazo, G., Carollo, V.L. and Dubcovsky, J. 2002. Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticae EST databases. Theor. Appl. Genet. 104: 840–844.

    Google Scholar 

  • Elrouby, N. and Bureau, T.E. 2001. A novel hybrid open reading frame formed by multiple cellular gene transductions by a plant long terminal repeat retroelement. J. Biol. Chem. 276: 41963–41968.

    Google Scholar 

  • Feschotte, C., Jiang, N. and Wessler, S.R. 2002. Plant transposable elements: where genetics meets genomics. Genetics 3: 329–341.

    Google Scholar 

  • Gesteland, R.F. and Atkins, J.F. 1996. Recoding: dynamic reprogramming of translation. Annu. Rev. Biochem. 65: 741–768.

    Google Scholar 

  • Grandbastien, M.A. 1998. Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3: 181–187.

    Google Scholar 

  • Grandbastien, M.A., Lucas, H., Morel, J.B., Mhiri, C., Vernhettes, S. and Casacuberta, J.M. 1997. The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica 100: 241–252.

    Google Scholar 

  • Hebsgaard, S.M., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouzé, P. and Brunak, S. 1996. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucl. Acids Res. 24: 3439–3452.

    Google Scholar 

  • Hirochika, H. 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12: 2521–2528.

    Google Scholar 

  • Hirochika, H. and Hirochika, R. 1993. Ty1-copia group retrotransposons as ubiquitous components of plant genomes. Jpn. J. Genet. 68: 35–46.

    Google Scholar 

  • Hofmann, K. and Stoffel, W. 1993. TMBASE – a database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374: 166.

    Google Scholar 

  • Holzschu, D.L., Martineau, D., Fodor, S.K., Vogt, V.M., Bowser, P.R. and Casey, J.W. 1995. Nucleotide sequence and protein analysis of a complex piscine retrovirus, Walley dermal sarcoma virus. J. Virol. 69: 5320–5331.

    Google Scholar 

  • Hull, R. 2001. Classifying reverse transcribing elements: a proposal and a challenge to the ICTV. Arch. Virol. 146: 2255–2261.

    Google Scholar 

  • Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. and Schulman, A.H. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97: 6603–6607.

    Google Scholar 

  • Kato, A., Iida, Y., Yakura, K. and Tanifuji, S. 1985. Sequence analysis of Vicia faba highly repeated DNA: the BamHI repeated sequence families. Plant Mol. Biol. 5: 41–53.

    Google Scholar 

  • Kato, H., Sriprasertsak, P., Seki, H., Ichinose, Y., Shiraishi, T. and Yamada, T. 1999. Functional analysis of retrotransposons in pea. Plant Cell Physiol. 40: 933–941.

    Google Scholar 

  • Krogh, A., Larrson, B., von Heijne, G. and Sonnhammer, E.L.L. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567–580.

    Google Scholar 

  • Kumar, A. and Bennetzen, J. L. 1999. Plant retrotransposons. Annu. Rev. Genet. 33: 479–532.

    Google Scholar 

  • Kumekawa, N., Ohtsubo, H., Horiuchi, T. and Ohtsubo, E. 1999a. Identification and characterization of novel retrotransposons of the gypsy type in rice. Mol. Gen. Genet. 260: 593–602.

    Google Scholar 

  • Kumekawa, N., Ohtsubo, E. and Ohtsubo, H. 1999b. Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. Genes Genet. Syst. 74: 299–307.

    Google Scholar 

  • Laten, H.M. 1999. Phylogenetic evidence for Ty1-copia-like endogenous retroviruses in plant genomes. Genetica 107: 87–93.

    Google Scholar 

  • Laten, H.M, Majumdar, A. and Gaucher, E.A. 1998. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope like protein. Proc. Natl. Acad. Sci. USA 95: 6897–6902.

    Google Scholar 

  • Lerat, E. and Capy, E. 1999. Retrotransposons and retroviruses: analysis of the envelope gene. Mol. Biol. Evol. 16: 1198–1207.

    Google Scholar 

  • Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res. 25: 955–964.

    Google Scholar 

  • Maignan, S., Guilloteau, J.P., Zhou-Liu, Q., Clément-Mella, C. and Mikol, V. 1998. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J. Mol. Biol. 282: 359–368.

    Google Scholar 

  • Malik, H.S. and Eickbush, T.H. 2001. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 11: 1187–1197.

    Google Scholar 

  • Marchler-Bauer, A. anderson, J.B., DeWeese-Scott, C., Fedorova, N.D., Geer, L.Y., He, S., Hurwitz, D.I., Jackson, J.D., Jacobs, A.R., Lanczycki, C.J., Liebert, C.A., Liu, C., Madej, T., Marchler, G.H., Mazumder, R., Nikolskaya, A.N., Panchenko, A.R., Rao, B.S., Shoemaker, B.A., Simonyan, V., Song, J.S., Thiessen, P.A., Vasudevan, S., Wang, Y., Yamashita, R.A., Yin, J.J. and Bryant, S.H. 2003. CDD: a curated Entrez database of conserved domain alignments. Nucl. Acids Res. 31: 383–387.

    Google Scholar 

  • Martínez-Izquierdo, J.A., Garcia-Martínez, J. and Vicient, C.M. 1997. What makes Grande1 retrotransposon different? Genetica 100: 15–28.

    Google Scholar 

  • Neumann, P., Nouzová, M. and Macas, J. 2001. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 44: 716–728.

    Google Scholar 

  • Nouzová, M., Kubaláková, M., Doleželová, M., Koblížková, A., Neumann, P., Doležel, J. and Macas, J. 1999. Cloning and characterization of new repetitive sequences in field bean (Vicia faba L.). Ann. Bot. (London) 83: 535–541.

    Google Scholar 

  • Nouzová, M., Neumann, P., Navrátilová, A., Galbraith, D.W. and Macas, J. 2001. Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol. Biol. 45: 229–244.

    Google Scholar 

  • Pearce, S.R., Kumar, A. and Flavell, A.J. 1996. Activation of the Ty1-copia group retrotransposons of potato (Solanum tuberosum) during protoplast isolation. Plant Cell Rep. 15: 949–953.

    Google Scholar 

  • Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448.

    Google Scholar 

  • Persson, B. and Argos, P. 1994. Prediction of transmembrane segments in proteins utilizing multiple sequence alignments. J. Mol. Biol. 237: 182–192.

    Google Scholar 

  • Peterson-Burch, B.D. and Voytas, D.F. 2002. Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol. Biol. Evol. 19: 1832–1845.

    Google Scholar 

  • Peterson-Burch, B.D., Wright, D.A., Laten, H.M. and Voytas, D.F. 2000. Retroviruses in plants? Trends Genet. 16: 151–152.

    Google Scholar 

  • Pouteau, S., Huttner, E., Grandbastien, M.A. and Caboche, M. 1991. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10: 1911-1918.

    Google Scholar 

  • Rice, P., Longden, I. and Bleasby, A. 2000. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16: 276–277.

    Google Scholar 

  • Rossi, M., Araujo, P.G. and Van Sluys, M. 2001. Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Genet. Mol. Biol. 24: 147–154.

    Google Scholar 

  • Sanger, F., Nicklen, D. and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • SanMiguel, P. and Bennetzen, J. 1998. Evidence that recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82: 37–44.

    Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z. and Bennetzen, J.L. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    Google Scholar 

  • SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. and Bennetzen, J.L. 1998. The paleontology of intergene retrotransposons of maize. Nature Genet. 20: 43–45.

    Google Scholar 

  • Schmidt, T. 1999. LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant. Mol. Biol. 40: 903–910.

    Google Scholar 

  • Shehu-Xhilaga, M., Crowe, S.M. and Mak, J. 2001. Maintenance of the gag/gag-pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J. Virol. 75: 1834–1841.

    Google Scholar 

  • Shirasu, K., Schulman, A.H., Lahaye, T. and Schulze-Lefert, P. 2000. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10: 908–915.

    Google Scholar 

  • Skalka, A.M. 1989. Retroviral proteases: First glimpses at the anatomy of processing machine. Cell 56: 911–913.

    Google Scholar 

  • Staden, R. 1996. The Staden sequence analysis package. Mol. Biotechnol. 5: 233–241.

    Google Scholar 

  • Suoniemi, A., Narvanto, A. and Schulman, A.H. 1996. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol. Biol. 31: 295–306.

    Google Scholar 

  • Suoniemi, A., Tanskanen, J. and Schulman, A.H. 1998. Gypsy like retrotransposons are widespread in the plant kingdom. Plant J. 13: 699–705.

    Google Scholar 

  • Swanstrom, R. and Wills, J.W. 1997. Synthesis, assembly, and processing of viral proteins. In: J.M. Coffin, S.H. Hughes and H.E. Varmus (Eds.) Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 263–334.

    Google Scholar 

  • Takeda, S., Sugimoto, K., Otsuki, H. and Hirochika, H. 1998. Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol. Biol. 36: 365–376.

    Google Scholar 

  • Telesnitsky, A. and Goff, S.P. 1997. Reverse transcriptase and the generation of retroviral DNA. In: J.M. Coffin, S.H. Hughes and H.E. Varmus (Eds.) Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 121–160.

    Google Scholar 

  • Temin, H.M. 1981. Structure, variation and synthesis of retrovirus long terminal repeat. Cell 27: 1–3.

    Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    Google Scholar 

  • Turcich, M.P., Bokhari-Riza, A., Hamilton, D.A., He, C., Messier, W., Stewart, C.B. and Mascarenhas, J.P. 1996. PREM-2, a copia type retroelement in maize is expressed preferentially in early microspores. Sex. Plant Reprod. 9: 65–74.

    Google Scholar 

  • Tusnády, G.E. and Simon, I. 2001. The HMMTOP transmembrane topology prediction server. Bioinformatics 17: 849–850.

    Google Scholar 

  • Vicient, C.M., Jääskeläinen, M.J., Kalendar, R. and Schulman A.H. 2001a. Active retrotransposons are a common feature of grass genomes. Plant Physiol. 125: 1283–1292.

    Google Scholar 

  • Vicient, C.M., Kalendar, R. and Schulman, A.H. 2001b. Envelope class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res. 11: 2041–2049.

    Google Scholar 

  • Vicient, C.M., Suoniemi, A., Anamthawat-Jonsson, K., Tanskanen, J., Beharav, A., Nevo, E. and Schulman, A.H. 1999. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11: 1769–1784.

    Google Scholar 

  • Vogt, V.M. 1997. Retroviral virions and genomes. In: J.M. Coffin, S.H. Hughes and H.E. Varmus (Eds.) Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 27–70.

    Google Scholar 

  • Wilhelm, M. and Wilhelm, F.-X. 2001. Reverse transcription of retroviruses and LTR retrotransposons. Cell. Mol. Life Sci. 58: 1246–1262.

    Google Scholar 

  • Wöstemeyer, J. and Kreibich, A. 2002. Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution. Curr. Genet. 41: 189–198.

    Google Scholar 

  • Wright, D.A. and Voytas, D.F. 2001. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 12: 122–131.

    Google Scholar 

  • Xia, X., Du, S. and Erickson, L. 1996. A moderately repetitive DNA sequence in alfalfa is transcribed in a floral-specific manner. Genome 39: 9–16.

    Google Scholar 

  • Xiong, Y. and Eickbush, T.H. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, P., Požárková, D. & Macas, J. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol Biol 53, 399–410 (2003). https://doi.org/10.1023/B:PLAN.0000006945.77043.ce

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000006945.77043.ce

Navigation