Skip to main content
Log in

Role of calpains in diabetes mellitus-induced cataractogenesis: A mini review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Premature visual impairment due to lens opacification is a debilitating characteristic of untreated diabetes. Lens opacification is primarily due to the insolubilization of crystallins, proteins essential for lens optical properties, and recent studies have suggested that a major cause of this insolubilization may be the unregulated proteolysis of crystallins by calpains. These are intracellular cysteine proteases whose activation requires the presence of calcium (Ca2+) and elevated levels of lens Ca2+ is a condition associated with both diabetic cataractogenesis and other forms of the disorder. A number of calpains have been identified in the lens, including calpain 2, calpain 10 and two isozymes of calpain 3:Lp82 and Lp85. The use of animal hereditary cataract models have suggested that calpain 2 and/or Lp82 may be the major calpains involved in murine cataractogenesis with contributions from calpain 10 and Lp85. However, calpain 2 appears to be the major calpain involved in murine diabetic cataractogenesis and the strongest candidate of the calpains for a role in human types of cataractogenesis. Here, we present an overview of recent evidence on which these observations are based with an emphasis on the ability of calpains to proteolyse lens crystallins and calpain structural features, which appear to be involved in the Ca2+-mediated activation of these enzymes. (Mol Cell Biochem 261: 151–159, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhat SP: The ocular lens epithelium. Biosci Rep 21: 537–563, 2001

    Article  CAS  PubMed  Google Scholar 

  2. Biswas S, Harris F, Phoenix DA: Treatment of cataracts: Vision for the future? Biologist 48: 273–277, 2001

    CAS  PubMed  Google Scholar 

  3. Bron AJ, Vrensen GFJM, Koretz J, Maraini G, Harding JJ: The ageing lens. Opthalmologia 214: 8686–104, 2000

    Google Scholar 

  4. Vaney DI, Weiler R: Gap junctions in the eye: Evidence for heteromeric, heterotypic and mixed-homotypic interactions. Brain Res Rev 32: 115–120, 2000

    Article  CAS  PubMed  Google Scholar 

  5. Harding JJ: Lens In: J.J. Harding (ed). Biochemistry of the Eye. Chapman and Hall, London, 1997, pp 94–135

    Google Scholar 

  6. Truscott RJW: Human cataract: The mechanisms responsible; light and butterfly eyes. Int J Biochem Cell Biol 35: 1500–1504, 2003

    Article  CAS  PubMed  Google Scholar 

  7. Francis PJ, Berry V, Moore AT, Bhattacharya S: Lens biology: Development and human cataractogenesis. Trends Genet 15: 191–196, 1999

    Article  CAS  PubMed  Google Scholar 

  8. Bron AJ, Brown NA, Harding JJ, Ganea E: The lens and cataract in diabetes. Int Ophthalmol Clin 38: 37–67, 1998

    CAS  PubMed  Google Scholar 

  9. Olson RJ, Mamalis N, Werner L, Apple DJ: Cataract treatment in the beginning of the 21st century. Am J Ophth 136: 146–154, 2003

    PubMed  Google Scholar 

  10. Brown NP, Bron AJ: Aetiological classification of cataract: Ocular, toxic, nutritional and physical factors, and senile cataract In: N.P. Brown, A.J. Bron (eds). Lens Disorders a Clinical Manual of Cataract Diagnosis. Butterwoth-Heinemann, Oxford, 1996a, pp 190–211

    Google Scholar 

  11. Brown NP, Bron AJ: Development of the lens In: N.P. Brown, A.J. Bron (eds). Lens Disorders a Clinical Manual of Cataract Diagnosis. Butterwoth-Heinemann, Oxford, 1996b, pp 4–17

    Google Scholar 

  12. Harding JJ: Viewing molecular mechanisms of ageing through a lens. Ageing Res Rev 1: 465–479, 2002

    CAS  PubMed  Google Scholar 

  13. Franke S, Dawczynski J, Strobel J, Niwa T, Stahl P, Stein G: Increased levels of advanced glycation end products in human cataractous lenses. J Cataract Refract Surg 29: 998–1004, 2003

    PubMed  Google Scholar 

  14. Stitt AW: Advanced glycation: An important pathological event in diabetic and age related ocular disease. Br J Opthalmol 85: 746–753, 2001

    CAS  Google Scholar 

  15. Spector A: Review: Oxidative stress and disease. J Ocul Pharmacol Ther 16: 193–201, 2000

    CAS  PubMed  Google Scholar 

  16. Ottonello S, Foroni C, Carta A, Petrucco S, Maraini G: Oxidative stress and age-related cataract. Ophthmalogica 214: 78–85, 2000

    CAS  Google Scholar 

  17. Horwitz J: Alpha-crystallin. Exp Eye Res 76: 145–153, 2003

    Article  CAS  PubMed  Google Scholar 

  18. Derham BK, Harding JJ: Effects of modifications of α-crystallin on its chaperone and other properties. Biochem J 364: 717–717, 2002

    Article  Google Scholar 

  19. Fujii N, Awakura M, Takemoto L, Inomata M, Takata T, Fujii N, Saito T: Characterization of alpha A-crystallin from high molecular weight aggregates in the normal human lens. Mol Vis 9: 315–322, 2003

    CAS  PubMed  Google Scholar 

  20. Cherian-Shaw M, Smith JB, Jiang XY, Abrahem EC: Intrapolypeptide disulphides in human alpha A-crystallin and their effect on chaperone-like function. Mol Cell Biochem 199: 163–167, 1999

    Article  CAS  PubMed  Google Scholar 

  21. Cherian M, Abraham EC: Decreased molecular chaperone property of alpaha-crystallins due to post-translational modifications. Biochem Biophys Res Commun 208: 675–679, 1995

    Article  CAS  PubMed  Google Scholar 

  22. Thampi P, Zarina S: Alpha-crystallin function in diabetic rat and human. Mol Cell Biochem 229: 113–118, 2002

    Article  CAS  PubMed  Google Scholar 

  23. Huang YH, Wang KKW: The calpain family and human disease. Trends Mol Med 7: 355–362, 2001

    Article  CAS  PubMed  Google Scholar 

  24. Azuma M, Fukiage C, David LL, Shearer TR: Activation of calpain in lens: A review and proposed mechanism. Exp Eye Res 64: 29–538, 1997

    Google Scholar 

  25. Shearer TR, Ma H, Shih M, Fukiage C, Azuma M: Calpains in the lens and cataractogenesis. Methods Mol Biol 144: 277–285, 2000

    CAS  PubMed  Google Scholar 

  26. Thampi P, Abraham E: Truncation of C-terminal series of human αA-crystallin results in decreased chaperone activity. Assoc Res Vis Ophthalmol (abstract): B544, 2002

  27. Cho W, Abraham E: C-terminal truncation of five amino acid residues of αB-crystallin influences its chaperone activity. Assoc Res Vis Ophthalmol (abstract): B545, 2002

  28. Goll DE, Thompson VF, Li HQ, Wei W, Cong JY: The calpain system. Physiol Rev 83: 731–801, 2003

    CAS  PubMed  Google Scholar 

  29. Perrin BJ, Huttenlocher A: Calpain. Int J Biochem Cell Biol 34: 722–725, 2002

    Article  CAS  PubMed  Google Scholar 

  30. Tang DX, Borchman D, Yappert MC, Vrensen GFJM, Rasi V: Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses. Invest Ophthalmol Vis Sci 44: 2059–2066, 2003

    Article  PubMed  Google Scholar 

  31. Baruch A, Greenbaum D, Levy ET, Nielsen PA, Gilula NB, Kumar NM, Bogyo M: Defining a link between gap junction communication, proteolysis, and cataract formation. J Biol Chem 276: 28999–29006, 2001

    Article  CAS  PubMed  Google Scholar 

  32. Ma H, Fukiage C, Azuma M, Shearer TR: Cloning and expression of mRNA for calpain Lp82 from rat lens: Splice variant of p94. Invest Ophthalmol Vis Sci 39: 454–461, 1998a

    CAS  PubMed  Google Scholar 

  33. Ma H, Shih M, Hata I, Fukiage C, Azuma M, Shearer TR: Protein for Lp82 calpain is expressed and enzymatically active in young rat lens. Exp Eye Res 67: 221–229, 1998b

    CAS  PubMed  Google Scholar 

  34. Ma H, Shih M, Hata I, Fukiage C, Azuma M, Shearer TR: Lp85 calpain is an enzymatically active rodent-specific isozyme of lens Lp82. Curr Eye Res 20: 183–189, 2000a

    Article  CAS  PubMed  Google Scholar 

  35. Ma H, Fukiage C, Kim YH, Duncan MK, Reed NA, Shih M, Azuma M, Shearer TR: Characterization and expression of calpain 10—a novel ubiquitous calpain with nuclear localization. J Biol Chem 276: 28525–28531, 2001

    CAS  PubMed  Google Scholar 

  36. Azuma M, Fukiage C, Higashine M, Nakajima T, Ma H, Shearer TR: Identification and characterization of a retina-specific calpain (Rt88) from rat. Curr Eye Res 21: 710–720, 2000

    Article  CAS  PubMed  Google Scholar 

  37. Nakajima T, Fukiage C, Azuma M, Ma H, Shearer TR: Different expression patterns for ubiquitous calpains and Capn3 splice variants in monkey ocular tissues. BBA-Gene Struct Expr 1519: 55–64, 2001

    CAS  Google Scholar 

  38. Nakama K, Shichinohe K, Kobayashi K, Naito K, Uchida O, Yasuhara K, Tobe M: Spontaneous diabetes-like syndrome in WBN/Kob rats. Acta Diabetol Lat 22: 335–342, 1985

    CAS  PubMed  Google Scholar 

  39. Sakamoto-Mizutani K, Fukiage C, Tamada Y, Azuma M, Shearer TR: Contribution of ubiquitous calpains to cataractogenesis in the spontaneous diabetic WBN/Kob rat. Exp Eye Res 75: 611–617, 2002

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura Y, Fukiage C, Ma H, Shih M, Azuma M, Shearer TR: Decreased sensitivity of lens-specific calpain Lp82 to calpastatin inhibitor. Exp Eye Res 69: 155–162, 1999

    Article  CAS  PubMed  Google Scholar 

  41. Shearer RT, Ma H, Fukiage C, Azuma M: Selenite nuclear cataract: Review of the Model. Mol Vis 3: 8, 1997

    CAS  PubMed  Google Scholar 

  42. Reed NA, Castellini MA, Ma H, Shearer TR, Duncan MK: Protein expression patterns for ubiquitous and tissue specific calpains in the developing mouse lens. Exp Eye Res 76: 433–443, 2003

    Article  CAS  PubMed  Google Scholar 

  43. Reverter D, Braun M, Fernandez-Catalan C, Strobl S, Sorimachi H, Bode W: Flexibility analysis and structure comparison of two crystal forms of calcium-free human m-calpain. Biol Chem 383: 1415–1422, 2002

    Article  CAS  PubMed  Google Scholar 

  44. Reverter D, Sorimachi H, Bode W: The structure of calcium-free human m-calpain: Implications for Calcium Activation and Function. Trends Cardiovasc Med 11: 222–229, 2001

    Article  CAS  PubMed  Google Scholar 

  45. Reverter D, Strobl S, Fernandez-Catalan C, Sorimachi H, Suzuki K, Bode W: Structural basis for possible calcium-induced activation mechanisms of calpains. Biol Chem 382: 753–766, 2001

    Article  CAS  PubMed  Google Scholar 

  46. Sokol SB, Kuwabara PE: Proteolysis in Caenorhabditis elegans sex determination: Cleavage of TRA-2A by TRA-3. Gene Dev 14: 901–906, 2000

    CAS  PubMed  Google Scholar 

  47. Tompa P, Emori Y, Sorimachi H, Suzuki K, Friedrich P: Domain III of calpain is a Ca2+-regulated phospholipid-binding domain. Biochem Bioph Res 280: 1333–1339, 2001

    CAS  Google Scholar 

  48. Sakai H: Cataractous changes in a new diabetic strain of rat (WBN/Kob): Morphological changes. Atarashi Ganka (J Eye) 8: 1659–1663, 1991

    Google Scholar 

  49. Horikawa Y, Oda N, Cox NJ, Li XQ, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PEH, del Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze T, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI: Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2: 163–175, 2000

    Google Scholar 

  50. Herasse M, Ono Y, Fougerousse F, Kimura E, Stockholm D, Beley C, Montarras D, Pinset C, Sorimachi H, Suzuki K, Beckmann JS, Richard I: Expression and functional characteristics of calpain 3 isoforms generated through tissue-specific transcriptional and posttranscriptional events. Mol Cell Biol 19: 4047–4055, 1999

    CAS  PubMed  Google Scholar 

  51. Ma H, Shih M, Fukiage C, Azuma M, Duncan MK, Reed NA, Richard I, Beckmann JS, Shearer TR: Influence of specific regions in Lp82 calpain on protein stability, activity, and localization within lens. Invest Ophthalmol Vis Sci 41: 4232–4239, 2000

    CAS  PubMed  Google Scholar 

  52. Nakajima T, Fukiage C, Azuma M, Ma H, Shearer TR: Different expression patterns for ubiquitous calpains and Capn3 splice variants in monkey ocular tissues. Biochim Biophys Acta 1519: 55–64, 2001

    CAS  PubMed  Google Scholar 

  53. Ueda Y, Duncan MK, David LL: Lens proteonomics: The accumulation of crystallin modifications in the mouse lens with age. Invest Opthalmol Vis Sci 43: 205–215, 2002

    Google Scholar 

  54. David LL, Azuma M, Shearer TR: Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of the rat lens. Invest Ophthalmol Vis Sci 35: 785–793, 1994

    CAS  PubMed  Google Scholar 

  55. Ma H, Hata I, Shih M, Fukiage C, Nakamura Y, Azuma M, Shearer TR: Lp82 is the dominant form of calpain in young mouse lens. Exp Eye Res 68: 447–456, 1999

    Article  CAS  PubMed  Google Scholar 

  56. Azuma M, Tamada Y, Kanaami S, Nakajima E, Nakamura Y, Fukiage C, Forsberg NE, Duncan MK, Shearer TR: Differential influence of proteolysis by calpain 2 and Lp82 on in vitro precipitation of mouse lens crystallins. Biochem Biophys Res Commun 307: 558–563, 2003

    Article  CAS  PubMed  Google Scholar 

  57. Ueda Y, Fukiage C, Shih M, Shearer TR, David LL: Mass measurements of C-terminally truncated alpha-crystallins from two-dimensional gels identify Lp82 as a major endopeptidase in rat lens. Mol Cell Proteonomics 1: 357–365, 2002

    CAS  Google Scholar 

  58. Sharma KK, Kester K, Elser N: Identification of new lens protease(s) using peptide substrates having in vivo cleavage sites. Biochem Biophys Res Commun 218: 365–370, 1996

    Article  CAS  PubMed  Google Scholar 

  59. Takemoto L: Release of α-A sequence 158-173 correlates with a decrease in the molecular chaperone properties of native α-Crystallin. Exp Eye Res 59: 239–242, 1994

    Article  CAS  PubMed  Google Scholar 

  60. Inomata M, Hayashi M, Ito Y, Matsubara Y, Takehana M, Kawashima S, Shumiya S: Comparison of Lp82-and m-calpain-mediated proteolysis during cataractogenesis in Shumiya cataract rat (SCR). Curr Eye Res 25: 207–213, 2002

    Article  PubMed  Google Scholar 

  61. Inomata M, Hayashi M, Shumiya S, Kawashima S, Ito Y: Aminoguanidine-treatment results in the inhibition of lens opacification and calpain-mediated proteolysis in Shumiya cataract rats (SCR). J Biochem 128:771–776, 2000

    CAS  PubMed  Google Scholar 

  62. Thampi P, Hassan A, Smith JB, Abraham EC: Enhanced C-terminal truncation of alpha A-and alpha B-crystallins, in diabetic lenses. Invest Ophthanmol Vis Sci 43: 3265–3272, 2002

    Google Scholar 

  63. Perry RE, Swamy MS, Abraham EC: Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats. Exp Eye Res 44: 269–282, 1987

    CAS  PubMed  Google Scholar 

  64. de Jong WW: Evolution of lens and crystallins. In: B. Bloemendal, H. Bloemendal (eds). Molecular and Cellular Biology of the Eye Lens. Wiley, New York, 1981, pp 221–278

    Google Scholar 

  65. Ueda Y, McCormack AL, Shearer TR, David LL: Purification and characterization of lens specific calpain (Lp82) from bovine lens. Exp Eye Res 73: 625–637, 2001

    Article  CAS  PubMed  Google Scholar 

  66. Fougerousse F, Bullen P, Herasse M, Lindsay S, Richard I, Wilson D, Suel L, Durand M, Robson S, Abitbol M, Beckmann JS, Strachan T: Human-mouse differences in the embryonic expression patterns of developmental control genes and disease genes. Hum Mol Genet 9: 165–173, 2000

    Article  CAS  PubMed  Google Scholar 

  67. Lund AL, Smith JB, Smith DL: Modifications of the water-insoluble human lens alpha-crystallins. Exp Eye Res 63: 661–672, 1996

    Article  CAS  PubMed  Google Scholar 

  68. Takemoto LJ: Identification of the in-vivo truncation sites at the C-terminal region of alpha A-crystallin from aged bovine and human lens. Curr Eye Res 14: 837–841, 1995

    CAS  PubMed  Google Scholar 

  69. Covis CM, Duglas-Tabor Y, Weth KB, Viera NE, Kowalak JA, Janjani A, Yergi AL, Garland DL: Tracking pathology with proteonimics: Identification of in vivo degradation products of αB-crystallins. Electrophoresis 21: 2219–2225, 2000

    Google Scholar 

  70. Andersson M, Sjostrand J, Karlsson J-O: Calpains in the human lens: Relations to membranes and possible role in cataract formation. Ophthalmol Res 28: 51–54, 1996

    CAS  Google Scholar 

  71. Shearer TR, David LL: Calpains in lens and cataract. In: R.L. Mellgren, T. Murachi (eds). Intracellular Calcium-Dependent Proteolysis. CRC Press, Boca Raton, FL, 1991 pp 265–274

    Google Scholar 

  72. Fukiage C, Azuma M, Nakamura Y, Tamada Y, Shearer TR: Calpain-induced light scattering by crystallins from three rodent species. Exp Eye Res 65: 757–770, 1997

    Article  CAS  PubMed  Google Scholar 

  73. Andersson M, Sjostrand J, Andersson AK, Andersen B, Karlsson J-O: Calpains in lens epithelium from patients with cataract. Exp Eye Res 59: 359–364, 1994

    Article  CAS  PubMed  Google Scholar 

  74. Duncan G, Bushell AR: Ion analysis of human cataractous lenses. Exp Eye Res 20: 223–230, 1975

    Article  CAS  PubMed  Google Scholar 

  75. Hightower KR, Farnum R: Calcium induced opacities in cultured human lenses. Exp Eye Res 41: 565–568, 1985

    CAS  PubMed  Google Scholar 

  76. David LL, Varnum MD, Lampi MD, Shearer TR: Calpain II in human lens. Invest Ophthalmol Vis Sci 30: 269–275, 1989

    CAS  PubMed  Google Scholar 

  77. Sanderson J, Marcantonio JM, Duncan G: A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Invest Ophthalmol Vis Sci 41: 2255–2261, 2000

    CAS  PubMed  Google Scholar 

  78. Sanderson J, Marcantonio JM, Duncan G: Calcium ionophore induced proteolysis and cataract: Inhibition by cell permeable calpain antagonists. Biochem Biophys Res Commun 218: 893–901, 1996

    Article  CAS  PubMed  Google Scholar 

  79. Marcantonio JM, Duncan G: Calcium-induced degradation of the lens cytoskeleton. Biochem Soc Trans 19: 1148–1150, 1991

    CAS  PubMed  Google Scholar 

  80. Suzuki K, Sorimachi HA: Novel aspect of calpain activation. FEBS Letts 433: 1–4, 1998

    Article  CAS  Google Scholar 

  81. Kawasaki H, Kawashima S: Regulation of the calpain-calpastatin system by membranes. Mol Mem Biol 13(review): 217–224, 1996

    CAS  Google Scholar 

  82. Johnson GVW, Guttmann RP: Calpains: Intact and active? Bioessays 19: 1011–1018, 1997

    CAS  PubMed  Google Scholar 

  83. Molinari M, Carafoli E: Calpain: A cytosolic proteinase active at the membranes. J Membrane Biol 156: 1–8, 1997

    Article  CAS  Google Scholar 

  84. Hosfield CM, Elce JS, Davies PL, Jia ZC: Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J 18: 6880–6889, 1999

    Article  CAS  PubMed  Google Scholar 

  85. Strobl S, Fernandez-Catalan C, Braun M, Huber R, Masumoto H, Nakagawa K, Irie A, Sorimachi H, Bourenkow G, Bartunik H, Suzuki K, Bode W: The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci USA 97: 588–592, 2000

    Article  CAS  PubMed  Google Scholar 

  86. Rizo J, Sŭdhof TC: C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273: 15879–15882, 1998

    Article  CAS  PubMed  Google Scholar 

  87. Daman A, Harris F, Biwas S, Wallace J, Phoenix DA: A theoretical investigation into the lipid interactions of m-calpain. Mol Cell Biochem 223: 159–163, 2001

    Article  CAS  PubMed  Google Scholar 

  88. Biswas S, Harris F, Daman OA, Wallace J, Phoenix DA: A theoretical investigation into the role of amphiphilic alpha-helical structure in the lipid interactions of m-calpain. Invest Ophthalmol Vis Sci 42suppl: 4710, 2001

    Google Scholar 

  89. Brandenburg K, Harris F, Dennison S, Seydel U, Phoenix DA: Domain V of m-calpain shows the potential to form an oblique-orientated alpha-helix, which may modulate the enzyme's activity via interactions with anionic lipid. Eur J Biochem 269: 5414–5422, 2002

    CAS  PubMed  Google Scholar 

  90. Phoenix DA, Dennison S, Harris F, Hauβ T, Dante S, Brandenburg K, Biswas S: Investigations into the membrane interactions of m-calpain, an enzyme implicated in diabetic cataractogenesis. Int J Diabetes and Metab 11: 21A, 2003

    Google Scholar 

  91. Wang KKW, Yuen PW: Calpain inhibition—an overview of its therapeutic potential. Trends Pharmacol Sci 15: 412–419, 1994

    Article  CAS  PubMed  Google Scholar 

  92. Nakamura M, Yamaguchi M, Sakai O, Inoue J: Exploration of cornea permeable calpain inhibitors as anticataract agents. Bioorgan Med Chem 11: 1371–1379, 2003

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Harris, F., Singh, J. et al. Role of calpains in diabetes mellitus-induced cataractogenesis: A mini review. Mol Cell Biochem 261, 151–159 (2004). https://doi.org/10.1023/B:MCBI.0000028750.78760.6f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000028750.78760.6f

Navigation