Skip to main content
Log in

Water Structure and Phase Transition Near a Surface

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This article concerns the density and orientational structure of water near uncharged (hydrophobic) and charged (hydrophilic) surfaces and the surface-induced phase transition accompanying a powerful, attractive surface force. Previously reported studies on the water structure using the integral equation theories and computer simulations are critically reviewed, and some controversial aspects are reexamined by additional calculations. Effects of the surface curvature and surface charge density on the structure are analyzed in detail. A new analysis is performed on the phase transition for water containing a trace amount of a hydrophobic component at surfaces. It is shown that the transition occurs even at charged surfaces and the attraction induced between surfaces predominates over the strong Coulombic repulsion at sufficiently small separations. At highly charged surfaces, however, the transition does not occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Y. Lee, J. A. McCammon, and P. J. Rossky, J. Chem. Phys. 80, 4448 (1984).

    Google Scholar 

  2. J. P. Valleau and A. A. Gardner, J. Chem. Phys. 86, 4162 (1987).

    Google Scholar 

  3. J. C. Shelley and G. N. Patey, Mol. Phys. 88, 385 (1996).

    Google Scholar 

  4. G. M. Torrie, P. G. Kusalik, and G. N. Patey, J. Chem. Phys. 88, 7826 (1988).

    Google Scholar 

  5. P. Attard, D. Wei, G. N. Patey, and G. M. Torrie, J. Chem. Phys. 93, 7360 (1990).

    Google Scholar 

  6. G. M. Torrie and G. N. Patey, J. Phys. Chem. 97, 12909 (1993).

    Google Scholar 

  7. M. Kinoshita and M. Harada, Mol. Phys. 81, 1473 (1994).

    Google Scholar 

  8. M. Kinoshita and F. Hirata, J. Chem. Phys. 104, 8807 (1996).

    Google Scholar 

  9. J. C. Shelley, G. N. Patey, D. R. Bérard, and G. M. Torrie, J. Chem. Phys. 107, 2122 (1997).

    Google Scholar 

  10. M. Kinoshita, S. Iba, K. Kuwamoto, and M. Harada, J. Chem. Phys. 105, 7184 (1996).

    Google Scholar 

  11. M. Kinoshita, Mol. Phys. 94, 485 (1998).

    Google Scholar 

  12. M. Kinoshita, Mol. Phys. 96, 71 (1999).

    Google Scholar 

  13. M. Kinoshita, Chem. Phys. Lett. 325, 281 (2000).

    Google Scholar 

  14. M. Kinoshita, Chem. Phys. Lett. 326, 551 (2000).

    Google Scholar 

  15. M. Kinoshita, Chem. Phys. Lett. 333, 217 (2001).

    Google Scholar 

  16. H. Greberg and G. N. Patey, J. Chem. Phys. 114, 7182 (2001).

    Google Scholar 

  17. S. D. Overduin and G. N. Patey, J. Chem. Phys. 117, 3391 (2002).

    Google Scholar 

  18. P. G. Kusalik and G. N. Patey, J. Chem. Phys. 88, 7715 (1988).

    Google Scholar 

  19. P. G. Kusalik and G. N. Patey, Mol. Phys. 65, 1105 (1988).

    Google Scholar 

  20. P. H. Fries and G. N. Patey, J. Chem. Phys. 82, 429 (1985).

    Google Scholar 

  21. M. Kinoshita and M. Harada, Mol. Phys. 74, 443 (1991).

    Google Scholar 

  22. D. R. Bérard and G. N. Patey, J. Chem. Phys. 95, 5281 (1991).

    Google Scholar 

  23. M. Kinoshita and M. Harada, Mol. Phys. 79, 145 (1993).

    Google Scholar 

  24. M. Kinoshita and D. R. Bérard, J. Comput. Phys. 124, 230 (1996).

    Google Scholar 

  25. M. Kinoshita, S. Iba, and M. Harada, J. Chem. Phys. 105, 2487 (1996).

    Google Scholar 

  26. A. Malijevský and S. Labík, Mol. Phys. 60, 663 (1987).

    Google Scholar 

  27. D. Henderson and M. Plischke, Proc. R. Soc. Lond. Ser. A 400, 163 (1985).

    Google Scholar 

  28. P. Attard and G. N. Patey, J. Chem. Phys. 92, 4970 (1990).

    Google Scholar 

  29. L. L. Lee and D. Levesque, Mol. Phys. 26, 1351 (1973).

    Google Scholar 

  30. A. Geiger, A. Rahman, and F. H. Stillinger, J. Chem. Phys. 70, 263 (1979).

    Google Scholar 

  31. J. Israelachvili, Intermolecular & Surface Forces (Academic Press, London, 1991), p. 130, Fig. 8.4.

    Google Scholar 

  32. Y. Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20, 1208 (1979).

    Google Scholar 

  33. F. Lado, E. Lomba, and M. Lombardero, J. Chem. Phys. 103, 481 (1995).

    Google Scholar 

  34. M. Alvarez, F. Lado, E. Lomba, M. Lombardero, and C. Martín, J. Chem. Phys. 107, 4642 (1997).

    Google Scholar 

  35. L. Verlet, Mol. Phys. 41, 183 (1980).

    Google Scholar 

  36. S. Labík, A. Malijevský, and W. R. Smith, Mol. Phys. 73, 495 (1991).

    Google Scholar 

  37. R. Pospísil, A. Malijevský, S. Labík, and W. R. Smith, Mol. Phys. 74, 253 (1991).

    Google Scholar 

  38. S. Labík, A. Malijevský, R. Pospísil, and W. R. Smith, Mol. Phys. 74, 261 (1991).

    Google Scholar 

  39. E. Lomba, C. Martín, M. Lombardero, and J. A. Anta, J. Chem. Phys. 96, 6132 (1992).

    Google Scholar 

  40. D.-M. Duh and D. Henderson, J. Chem. Phys. 104, 6742 (1996).

    Google Scholar 

  41. M. Kinoshita, J. Chem. Phys. 118, 8969 (2003).

    Google Scholar 

  42. F. Otto and G. N. Patey, J. Chem. Phys. 112, 8939 (2000).

    Google Scholar 

  43. F. Otto and G. N. Patey, J. Chem. Phys. 113, 2851 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoshita, M. Water Structure and Phase Transition Near a Surface. Journal of Solution Chemistry 33, 661–687 (2004). https://doi.org/10.1023/B:JOSL.0000043632.91521.59

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSL.0000043632.91521.59

Navigation