Skip to main content
Log in

Comprehensive Thermodynamic Model Applicable to Highly Acidic to Basic Conditions for Isosaccharinate Reactions with Ca(II) and Np(IV)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Isosaccharinate (ISA), a degradation product of cellulose codisposed in low-level nuclear wastes, is expected to be one of the dominant complexing ligands for radionuclides, especially tetravalent actinides. This paper presents a comprehensive thermodynamic model for isosaccharinate reactions with Ca(II) and Np(IV). The model is valid for a wide range of pH values (∼2–14), ISA concentrations (ranging up to 0.1 m), and ionic strengths (ranging up to 6.54 m), and is based on (1) NMR investigations of HISA(aq) (α-D-isosaccharinic acid) and ISL(aq) [dehydration product of HISA(aq)], and the solubility of Ca(ISA)2(c) as a function of pH and concentrations of Ca and ISA; (2) NpO2(am) solubility in a wide range of pH values (∼2–14) and total ISA concentrations of 0.0016 and 0.008 m and at fixed pH values of approximately 5 and 12 with total ISA concentrations ranging from 0.0001 to 0.1 m; and (3) solvent extraction of Np-ISA solutions, containing fixed NaClO4 concentrations ranging from 0.103 to 6.54 m and at fixed pC H+ values ranging from 1.5 to 1.9, with dibenzoylmethane. Pitzer's ion-interaction approach was used to interpret the data. The different aqueous species required to explain these data included HISA(aq), ISL(aq), Ca(ISA)+, Np(OH)3(ISA)(aq), Np(OH)3(ISA)2 , Np(OH)4(ISA), and Np(OH)4(ISA)2 2−. The values of equilibrium constants for reactions involving these species and determined from these data provided close agreements between the observed and predicted concentrations in all of the systems investigated in this study and those reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. F. Greenfield, A. D. Moreton, M. W. Spindler, S. J. Williams, and D. R. Woodwark, Mat. Res. Soc. Symp. Proc. 257, 299(1992).

    Google Scholar 

  2. B. F. Greenfield, M. H. Hurdus, N. J. Pilkington, M. W. Spindler, and S. J. Williams, Mat. Res. Soc. Symp. Proc. 333, 705(1994).

    Google Scholar 

  3. B. F. Greenfield, C. M. Linklater, A. D. Moreton, M. W. Spindler, and S. J. Williams, in Actinide Processing: Methods and, Materials, B. Misra and W. A. Averill, eds. (Mineral, Metals, and Materials Society, 1994), pp. 289-303.

  4. B. F. Greenfield, G. J. Holton, M. H. Hurdus, N. O'Kelley, N. J. Pilkington, A. Rosevear, M. W. Spindler, and S. J. Williams, Mat. Res. Soc. Symp. Proc. 353, 1151(1995).

    Google Scholar 

  5. A. D. Moreton, Mat. Res. Soc. Symp. Proc. 294, 753(1993).

    Google Scholar 

  6. M. A. Glaus, A. Laube, S. Stallone, and L. R. Van Loon, Mat. Res. Soc. Symp. Proc. 506, 977(1998).

    Google Scholar 

  7. M. A. Glaus, L. R. Van Loon, S. Achatz, A. Chodura, and K. Fischer, Anal. Chim. Acta 398, 111(1999).

    Google Scholar 

  8. E. Wieland, J. Tits, P. Spieler, and J. P. Dobler, Mat. Res. Soc. Symp. Proc. 506, 573(1998).

    Google Scholar 

  9. X. Bourbon and P. Toulhoat, Radiochim. Acta 74, 315(1996).

    Google Scholar 

  10. L. R. Van Loon, M. A. Glaus, A. Laube, and S. Stallone, Radiochim. Acta 86, 83(1999).

    Google Scholar 

  11. K. Vercammen, M. A. Glaus, and L. R. Van Loon, Radiochim. Acta 84, 221(1999).

    Google Scholar 

  12. K. Vercammen, M. A. Glaus, and L. R. Van Loon, Radiochim. Acta 89, 393(2001).

    Google Scholar 

  13. R. L. Whistler, M. L. Wolfrom, and J. N. BeMiller, Methods in Carbohydrate Chemistry (Academic Press, New York, 1963).

    Google Scholar 

  14. D. Rai, L. F. Rao, and Y. Xia, J. Solution Chem. 27, 1109(1998).

    Google Scholar 

  15. D. Rai, L. F. Rao, and D. A. Moore, Radiochim. Acta 83, 9(1998).

    Google Scholar 

  16. H. M. Cho, D. Rai, N. J. Hess, Y. Xia, and L. Rao, J. Solution Chem., 32, 691(2003).

    Google Scholar 

  17. L. R. Van Loon, M. A. Glaus, and K. Vercammen, Acta Chem. Scand. 53, 235(1999).

    Google Scholar 

  18. K. Vercammen, M. A. Glaus, and L. R. Van Loon, Acta Chem. Scand. 53, 241(1999).

    Google Scholar 

  19. D. Rai and J. L. Ryan, Inorg. Chem. 24, 247(1985).

    Google Scholar 

  20. J. A. Schramke, D. Rai, R. W. Fulton, and G. R. Choppin, J. Radioanal. Nucl. Chem. 130, 333(1989).

    Google Scholar 

  21. Y. Xia, L. Rao, D. Rai, and A. R. Felmy, Radiochim. Acta 86, 33(1999).

    Google Scholar 

  22. D. Rai, A. R. Felmy, S. P. Juracich, and L. Rao, Estimating the Hydrogen Ion Concentration in Concentrated NaCl and Na2SO4 Electrolytes, SAND94-1949 (Sandia National Laboratory, Alburquerque, New Mexico, 1995).

    Google Scholar 

  23. M. S. Caceci and G. R. Choppin, Radiochim. Acta 33, 101(1983).

    Google Scholar 

  24. K. S. Pitzer, J. Phys. Chem. 77, 268(1973).

    Google Scholar 

  25. K. S. Pitzer, Ion Interaction Approach: Theory and Data Correlation (CRC Press, Boca Raton, FL 1991), Chap. 3.

    Google Scholar 

  26. S. M. Sterner, A. R. Felmy, J. R. Rustad, and K. S. Pitzer, Thermodynamic Analysis of Aqueous Solutions Using INSIGHT, PNWD-SA-4436 (Pacific Northwest National Laboratory, Richland, Washington, 1997).

    Google Scholar 

  27. D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, and M. Yui, Radiochim. Acta 84, 159(1999).

    Google Scholar 

  28. D. Rai, A. R. Felmy, S. M. Sterner, D. A. Moore, M. J. Mason, and C. F. Novak, Radiochim. Acta 79, 239(1997).

    Google Scholar 

  29. D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, M. Yui, and P. Vitorge, Radiochim. Acta 86, 89(1999).

    Google Scholar 

  30. A. R. Felmy, D. Rai, and M. J. Mason, Radiochim. Acta 55, 177(1991).

    Google Scholar 

  31. A. R. Felmy, D. Rai, S. M. Sterner, M. J. Mason, N. J. Hess, and S. D. Conradson, J. Solution Chem. 26, 233(1997).

    Google Scholar 

  32. C. E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723(1984).

    Google Scholar 

  33. D. Rai, L. Rao, H. T. Weger, A. R. Felmy, G. R. Choppin, and M. Yui, Thermodynamic Data for Predicting Concentration of Th(IV), U(IV), Np(IV) and Pu(IV) in Geologic Environments, JNC TH8400 99-009 (Japan Nuclear Cycle Development Institute, Tokai Works, Japan, 1999).

    Google Scholar 

  34. D. Rai, A. R. Felmy, and J. L. Ryan, Inorg. Chem. 29, 260(1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Hess, N.J., Xia, Y. et al. Comprehensive Thermodynamic Model Applicable to Highly Acidic to Basic Conditions for Isosaccharinate Reactions with Ca(II) and Np(IV). Journal of Solution Chemistry 32, 665–689 (2003). https://doi.org/10.1023/B:JOSL.0000002988.99769.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSL.0000002988.99769.cb

Navigation