Skip to main content
Log in

Fluorescent Chemosensors for Carbohydrates: A Decade's Worth of Bright Spies for Saccharides in Review

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This review provides a chronological survey of over fifty fluorescent chemosensors for carbohydrates from the period between 1992 to the present. The survey contains only those sensors that are synthetic or chemosensory, utilize boronic acids and display a fluorescence response in the form of intensity changes or shifts in wavelength. With each compound listed, a description of the saccharide probe is given with regard to concentration, excitation and emission wavelengths, pH and solvent mixture proportions. In addition, the selectivity of each chemosensor is provided as well as the trends in binding constants. Where possible, a description of the fluorescence signaling mechanism is given as well as commentary on the probe's unique features within this class of sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. T. D. James, K. R. A. S. Sandanayake, and S. Shinkai (1995). Recognition of sugars and related compounds by " reading-out "-type interfaces. Supramol. Chem. 6(1/2), 141–157.

    Google Scholar 

  2. T. D. James, K. R. A. S. Sandanayake, and S. Shinkai (1996). Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem., Int. Ed. 35(17), 1910–1922.

    Google Scholar 

  3. J. H. Hartley, T. D. Jame, and C. J. Ward (2000). Synthetic receptors. J. Chem. Soc., Perkin Trans. 1 (19), 3155–3184.

    Google Scholar 

  4. W. Wang, X. Gao, and B. Wang (2002). Boronic acid-based sensors. Current. Org. Chem. 6(14), 1285–1317.

    Google Scholar 

  5. T. D. James and S. Shinkai (2002). Host-Guest chemistry. Top. Curr. Chem. 218, 159–200.

    Google Scholar 

  6. J. Yoon and A. W. Czarnik (1992). Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching. J. Am. Chem. Soc. 114(14), 5874–5875.

    Google Scholar 

  7. T. D. Jame, P. Linnane, and S. Shinkai (1996). Fluorescent saccharide receptors: A sweet solution to the design, assembly and evaluation of boronic acid derived PET sensors. Chem. Commun. (3), 281–288. (Original paper by Czarnik and Yoon cited in reference 7 could not be located, so review paper is listed above. Based on isomeric relation between 1and 2, conditions and saccharide binding for 2were assumed to be similar to those of 1.)

    Google Scholar 

  8. Y. Nagai, K. Kobayashi, H. Toi, and Y. Aoyama (1993). Stabilization of sugar-boronic esters of indolyboronic acid in water via sugarindole interaction: A notable selectivity in oligosaccharides. Bull. Chem. Soc. Jpn. 66(10), 2965–2971.

    Google Scholar 

  9. H. Murakami, T. Nagasaki, I. Hamachi, and S. Shinkai (1993). Sugar sensing utilizing aggregation properties of a boronic-acid-appended porphyrin. Tetrahedron Lett. 34(39), 6273–6276.

    Google Scholar 

  10. T. D. Jame, K. R. A. S. Sandanayake, and S. Shinkai (1994). Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine. J. Chem. Soc., Chem. Commun. (4), 477–478.

    Google Scholar 

  11. T. D. Jame, K. R. A. S. Sandanayake, and S. Shinkai (1994). A glucose-selective molecular fluorescence sensor. Angew. Chem. Int. Ed. Engl. 33(21), 2207–2209.

    Google Scholar 

  12. K. R. A. S. Sandanayake, K. Nakashima, and S. Shinkai (1994).Specific recognition of disaccharides by trans-3,3-stilbenediboronic acid: Rigidification and fluorescence enhancement of the stilbene skeleton upon formation of a sugar-stilbene macrocycle. J. Chem. Soc., Chem. Commun. (14), 1621–1622.

    Google Scholar 

  13. T. D. Jame, K. R. A. S. Sandanayake, and S. Shinkai (1995). Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature (London) 347(23), 345–347.

    Google Scholar 

  14. K. R. A. S. Sandanayake, S. Imazu, T. D. Jame, M. Mikami, and S. Shinkai (1995). Molecular fluorescence sensor for saccharides based on amino coumarin. Chem. Lett. (2), 139–140.

    Google Scholar 

  15. H. Suenaga, M. Mikami, K. R. A. S. Sandanayake, S. Shinkai (1995). Screening of fluorescent boronic acids for sugar sensing which show a large fluorescence change. Tetrahedron Lett. 36(27), 4825–4828.

    Google Scholar 

  16. P. Linnane, T. D. Jame, S. Imazu, and S. Shinkai (1995). A sweet toothed saccharide (PET) sensor. Tetrahedron Lett. 36(48), 8833–8834.

    Google Scholar 

  17. T. D. Jame and S. Shinkai (1995). A diboronic acid "glucose cleft" and a biscrown ether "metal sandwich" are allosterically coupled. J. Chem. Soc., Chem. Commun. (14), 1483–1485.

    Google Scholar 

  18. P. Linnane, T. D. Jame, and S. Shinkai (1995). The synthesis and properties of a calixarene-based "sugar bowl." J. Chem. Soc., Chem. Commun. (19) 1997–1998.

    Google Scholar 

  19. K. R. A. S. Sandanayake, T. D. Jame, and S. Shinkai (1995). Two dimensional photoinduced electron transfer (PET) fluorescence sensor. Chem. Lett. (7), 503–504.

    Google Scholar 

  20. M. Takeuchi, T. Mizuno, H. Shinmori, M. Nakashima, and S. Shinkai (1996). Fluorescence and CD spectroscopic sugar sensing by a cyanine-appended diboronic acid probe. Tetrahedron 52(4), 1195–1204.

    Article  Google Scholar 

  21. T. D. Jame, H. Shinmori, M. Takeuchi, and S. Shinkai (1996). A saccharide "sponge." Synthesis and properties of a dendritic boronic acid. Chem. Commun. (6), 705–706.

    Article  Google Scholar 

  22. M. Takeuchi, S. Yoda, T. Imada, and S. Shinkai (1997). Chiral sugar recognition by a diboronic-acid-appended binaphthyl derivative through rigidification effect. Tetrahedron 53(25), 8335–8348.

    Google Scholar 

  23. T. D. Jame, H. Shinmori, and S. Shinkai (1997). Novel fluorescence sensor for "small" saccharides. Chem. Commun. (1), 71–72.

    Google Scholar 

  24. H. Kijima, M. Takeuchi, and S. Shinkai (1998). Selective detection of D-lactulose by a porphyrin-based diboronic acid. Chem. Lett. (8), 781–782.

    Google Scholar 

  25. C. R. Cooper and T. D. Jame (1997). Selective D-glucosamine hydrochloride fluorescence signaling based on ammonium cation and diol recognition. Chem. Commun. (15), 1419–1420.

    Google Scholar 

  26. M. Takeuchi, M. Yamamoto, and S. Shinkai (1997). Fluorescent sensing of uronic acids based on a cooperative action of boronic acid and metal chelate. Chem. Commun. (18), 1731–1732.

    Google Scholar 

  27. C. R. Cooper and T. D. James (1998). Selective fluorescence signalling of saccharides in their furanose form. Chem. Lett. (9), 883–884.

    Article  Google Scholar 

  28. G. P. Luis, M. Granda, R. Badia, and M. E. Díaz-García (1998). Selective fluorescent chemosensor for fructose. Analyst 123(1), 155–158.

    Article  Google Scholar 

  29. M. J. Deetz and B. D. Smith (1998). Heteroditopic ruthenium (II) bipyridyl receptor with adjacent saccharide and phosphate binding sites. Tetrahedron Lett. 39(38), 6841–6844.

    Article  Google Scholar 

  30. D. P. Adhikiri and M. D. Heagy (1999). Fluorescent chemosensor for carbohydrates which shows large change in chelation-enhanced quenching. Tetrahedron Lett. 40(45),7893–7896.

    Article  Google Scholar 

  31. H. Eggert, J. Frederiksen, C. Morin, and J. C. Norrild (1999). A new glucose-selective fluorescent Bisboronic acid. First report of strong a-furanose complexation in aqueous solution at physiological pH. J. Org. Chem. 64(11), 3846–3852.

    Article  Google Scholar 

  32. E. U. Akkaya and B. Kukrer (1999). Red to near IR fluorescent signaling of carbohydrates. Tetrahedron Lett. 40(51), 9125–9128.

    Google Scholar 

  33. W. Wang, S. Gao, and B. Wang (1999). Building fluorescent sensors by template polymerization: The preparation of a fluorescent sensor for D-fructose. Org. Lett. 1(8), 1209–1212.

    Article  Google Scholar 

  34. W. Yang, Y. He, and D. G. Drueckhammer (2001). Computer-guided design in molecular recognition: Design and synthesis of a glucopyranose receptor. Angew. Chem., Int. Ed. 40(9), 1714–1717.

    Google Scholar 

  35. N. DiCesare and J. R. Lakowicz (2001). A new highly fluorescent probe for monosaccharides based on a donor-acceptor diphenyloxazole. Chem. Commun. (19), 2022–2023.

    Google Scholar 

  36. N. DiCesare and J. R. Lakowicz (2001). Spectral properties of fluorophores combining the boronic acid group with electron donor or withdrawing groups. Implication in the development of fluorescence probes for saccharides. J. Phys. Chem. A 105(28), 6834–6840.

    Article  Google Scholar 

  37. N. DiCesare and J. R. Lakowicz (2001). Fluorescent probe for monosaccharides based on a functionalized boron-dipyrromethene with a boronic acid group. Tetrahedron Lett. 42(52), 9105–9108.

    Google Scholar 

  38. S. Arimori, M. L. Bell, C. S. Oh, K.A. Frimat, and T. D. Jame (2001). Modular fluorescence sensors for saccharides. Chem. Commun. (18), 1836–1837.

    Google Scholar 

  39. S. Arimori, L. I. Bosch, C. J. Ward, and T. D. Jame (2001). Fluorescent internal charge transfer (ICT) saccharide sensor. Tetrahedron Lett. 42(27), 4553–4555.

    Article  Google Scholar 

  40. A. Tong, A. Yamauchi, T. Hayashita, Z. Zhang, B. D. Smith, and N. Teramae (2001). Boronic acid fluorophore/ß-cyclodextrin complex sensors for selective sugar recognition in water. Anal Chem. 73(7), 1530–1536.

    Article  PubMed  Google Scholar 

  41. H. Cao, D. I. Diaz, N. DiCesare, J. R. Lakowicz, and M. D. Heagy (2002). Monoboronic acid sensor that displays anomalous fluorescence sensitivity to glucose. Org. Lett. 4(9), 1503–1505.

    Article  PubMed  Google Scholar 

  42. S. Arimori, C. J. Ward, and T. D. Jame (2002). A D-glucose selective fluorescent assay. Tetrahedron Lett. 43(2), 303–305.

    Article  Google Scholar 

  43. S. Arimori, L. I. Bosch, C. J. Ward, and T. D. Jame (2002). A D-glucose selective fluorescent internal charge transfer (ICT) sensor. Tetrahedron Lett. 43(5), 911–913.

    Article  Google Scholar 

  44. W. Yang, S. Gao, X. Gao, V. V. R. Karnati, W. Ni, B. Wang, W. B. Hook, J. Carson, and B. Weston (2002). Diboronic acids as fluorescent probes for cells expressing sialyl lewis x. Bioorg. Med. Chem. Lett. 12(16), 2175–2177.

    Article  Google Scholar 

  45. N. DiCesare and J. R. Lakowicz (2002). Chalcone-analogue fluorescent probes for saccharides signaling using the boronic acid group. Tetrahedron Lett. 43(14), 2615–2618.

    Article  Google Scholar 

  46. N. DiCesare, D. P. Adhikiri, J. J. Heynekamp, M. D. Heagy, and J. R. Lakowicz (2002). Spectroscopic and photophysical characterization of fluorescent chemosensors for monosaccharides based on N-phenylboronic acid derivatives of 1,8-naphthalimide. J. Fluoresc. 12(2), 147–153.

    Article  Google Scholar 

  47. J. N. Camara, J. T. Suri, F. E. Cappuccio, R. A. Wessling, and B. Singaram (2002). Boronic acid substituted viologen based optical sugar sensors: Modulated quenching with viologen as a method for monosaccharide detection. Tetrahedron Lett. 43(7), 1139–1141.

    Article  Google Scholar 

  48. S. Arimori, M. L. Bell, C. S. Oh, and T. D. Jame (2002). A modular fluorescence intramolecular energy transfer saccharide sensor. Org. Lett. 4(24), 4249–4251.

    Article  PubMed  Google Scholar 

  49. S. Arimori, G. A. Consiglio, M. D. Philips, and T. D. Jame (2003).Tuning saccharide selectivity in modular fluorescent sensors. Tetrahedron Lett. 44(25), 4789–4792.

    Article  Google Scholar 

  50. W. Yang, J. Yan, H. Fang, and B. Wang (2003). The first fluorescent sensor for D-glucarate based on the cooperative action of boronic acid and guanidinium groups. Chem. Commun. (6), 792–793.

    Article  Google Scholar 

  51. J. T. Suri, D. B. Cordes, F. E. Cappuccio, R. A. Wessling, and B. Singaram (2003). Monosaccharide detection with 4,7-phenanthrolinium salts: Charge-induced fluorescence sensing. Langmuir 19(12), 5145–5152.

    Article  Google Scholar 

  52. W. Yang, J. Yan, G. Springsteen, S. Deeter, W. Ni, and B. Wang (2003). A novel type of fluorescent boronic acid that shows large fluorescence intensity changes upon binding with a carbohydrate in aqueous solution at physiological pH. Bioorg. Med. Chem. Lett. 13(6), 1019–1022.

    PubMed  Google Scholar 

  53. X. Gao, Y. Zhang, and B. Wang (2003). New boronic acid fluorescent reporter compounds. 2. A naphthalene-based on-off sensor functional at physiological pH. Org. Lett. 5(24), 4615–4618.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Heagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, H., Heagy, M.D. Fluorescent Chemosensors for Carbohydrates: A Decade's Worth of Bright Spies for Saccharides in Review. Journal of Fluorescence 14, 569–584 (2004). https://doi.org/10.1023/B:JOFL.0000039344.34642.4c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000039344.34642.4c

Navigation