Skip to main content
Log in

Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The intense colors of noble metal nanoparticles have inspired artists and fascinated scientists for hundreds of years. In this review, we describe three sensing platforms based on the tunability of the localized surface plasmon resonance (LSPR) of gold and silver nanoparticles. Specifically, the color associated with solution-phase nanoparticles, surface-confined nanoparticle arrays, and single nanoparticles will be shown to be tunable and useful as platforms for biological sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. R. Nicewarner-Pena, R. Griffith Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan (2001). Submicrometer metallic barcodes. Science 294(5540), 137-141.

    Google Scholar 

  2. A. D. McFarland and R. P. Van Duyne (2003). Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057-1062.

    Google Scholar 

  3. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz. (2000). Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U.S.A. 97(3), 996-1001.

    Google Scholar 

  4. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592), 607-609.

    Google Scholar 

  5. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne (2001). Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers J. Am. Chem. Soc. 123(7), 1471-1482.

    Google Scholar 

  6. A. J. Haes and R. P. Van Duyne (2002). A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles J. Am. Chem. Soc. 124(35), 10596-10604.

    Google Scholar 

  7. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne (2004). Nanoscale Optical Biosensor: Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. (Submitted) J. Phys. Chem. B. ASAP.

  8. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan (1995). Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 267, 1629-1632.

    Google Scholar 

  9. M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill (1998). Periodically structured metallic substrates for SERS Sens. Actuator B-Chem. 51(1-3), 285-291.

    Google Scholar 

  10. G. C. Schatz and R. P. Van Duyne (2002). Electromagnetic Mechanism of Surface-Enhanced Spectroscopy, Vol. 1, Wiley, New York.

    Google Scholar 

  11. C. L. Haynes and R. P. Van Duyne (2003). Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 107, 7426-7433.

    Google Scholar 

  12. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll (2003). Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 107, 7337-7342.

    Google Scholar 

  13. Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith (1999). Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters. Adv. Mat. 11, 223-227.

    Google Scholar 

  14. C. L. Haynes and R. P. Van Duyne (2003). Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography. Nano Lett. 3(7), 939-943.

    Google Scholar 

  15. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater (2001). Plasmonics-A route to nanoscale optical devices. Adv. Mat. 13(19), 1501-1505.

    Google Scholar 

  16. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha (2003). Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mat. 2, 229-232.

    Google Scholar 

  17. R. A. Shelby, D. R. Smith, and S. Schultz (2001). Experimental verification of a negative index of refraction. Science 292(5514), 77-78.

    Google Scholar 

  18. R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger (1998). DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120, 12674-12675.

    Google Scholar 

  19. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West (2003). A whole blood immunoassay using gold nanoshells Anal. Chem. 75(10), 2377-2381.

    Google Scholar 

  20. A. J. Haes and R. P. Van Duyne (2002). A highly sensitive and selective surface-enhanced nanobiosensor. Mat. Res. Soc. Symp. Proc. 723, O3.1.1-O3.1.6.

    Google Scholar 

  21. A. J. Haes and R. P. Van Duyne (2003). Nanosensors enable portable detectors for environmental and medical applications Laser Focus World 39, 153-156.

    Google Scholar 

  22. A. J. Haes and R. P. Van Duyne (2003). Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy. SPIE, 5221, 47-58.

    Google Scholar 

  23. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne (2004). A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108(1), 109-116.

    Google Scholar 

  24. J. C. Riboh, A. J. Haes, A. D. McFarland, C. R. Yonzon, and R. P. Van Duyne (2003). A nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J. Phys. Chem. B 107, 1772-1780.

    Google Scholar 

  25. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne (2000). Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 104(45), 10549-10556.

    Google Scholar 

  26. S. Link and M. A. El-Sayed (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nano-dots and nano-rods. J. Phys. Chem. B 103(40), 8410-8426.

    Google Scholar 

  27. M. A. El-Sayed (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257-264.

    Google Scholar 

  28. A. M. Michaels, M. Nirmal, and L. E. Brus (1999). Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag Nanocrystals. J. Am. Chem. Soc. 121(43), 9932-9939.

    Google Scholar 

  29. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz (2000). Single-target molecule detection with nonbleaching multicolor optical immunolabels. P.N.A.S. 97(3), 996-1001.

    Google Scholar 

  30. J. Yguerabide and E. E. Yguerabide (1998). Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications-I. Theory. Anal. Biochem. 262, 137-156.

    Google Scholar 

  31. J. Yguerabide and E. E. Yguerabide (1998). Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications-II. Experimental characterization. Anal. Biochem. 262, 157-176.

    Google Scholar 

  32. U. Kreibig and M. Vollmer (1995) Cluster Materials, Vol. 25, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  33. C. L. Haynes and R. P. Van Duyne (2001). Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105(24), 5599-5611.

    Google Scholar 

  34. P. Mulvaney (2001). Not all that's gold does glitter. MRS Bull. 26(12), 1009-1014.

    Google Scholar 

  35. U. Kreibig, M. Gartz, A. Hilger, and H. Hovel (1998). in M. A. Duncan (Ed.), Advances in Metal and Semiconductor Clusters, JAI Press, Stanford, CT pp. 345-393.

    Google Scholar 

  36. P. Mulvaney (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3), 788-800.

    Google Scholar 

  37. U. Kreibig (1997). in R. E. Hummel and P. Wissmann (Eds.), Handbook of Optical Properties, CRC Press, Boca Raton, FL, pp. 145-190.

    Google Scholar 

  38. T. R. Jensen, M. L. Duval, K. L. Kelly, A. Lazarides, G. C. Schatz, and R. P. Van Duyne (1999). Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103(45), 9846-9853.

    Google Scholar 

  39. J. C. Hulteen and R. P. Van Duyne (1995). Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 13, 1553-1558.

    Google Scholar 

  40. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne (1999). Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. J. Phys. Chem. B 103(19), 3854-3863.

    Google Scholar 

  41. R. Micheletto, H. Fukuda, and M. Ohtsu (1995). A simple method for the production of a two-dimensional, ordered array of small latex particles. Langmuir 11, 3333-3336.

    Google Scholar 

  42. A. P. F. Turner (2000). Biosensors-Sense and sensitivity. Science 290, 1315-1317.

    Google Scholar 

  43. I. M. Klotz (1997). Ligand-Receptor Energetics: A Guide for the Perplexed, Wiley, New York.

    Google Scholar 

  44. H. J. Lee, T. T. Goodrich, and R. M. Corn (2001). SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal. Chem. 73(55), 5525-5531.

    Google Scholar 

  45. D. Hall (2001). Use of optical biosensors for the study of mechanistically concerted surface adsorption processes. Anal. Biochem. 288(2), 109-125.

    Google Scholar 

  46. J. Wang, X. Cai, G. Rivas, H. Shiraishi, P. A. M. Farias, and N. Dontha (1996). DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus. Anal. Chem. 68(15), 2629-2634.

    Google Scholar 

  47. H. T. Walterbeek and A. J. G. M. van der Meer (1996). A sensitive and quantitative biosensing method for the determination of γ-ray emitting radionuclides in surface water. J. Environ. Radioact. 33(3), 237-254.

    Google Scholar 

  48. D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson (2001). Electrochemical biosensors: Recommended definitions and classification Biosens. Bioelectron. 16(1/2), 121-131.

    Google Scholar 

  49. M. Mascini, I. Palchetti, and G. Marrazza (2001). DNA electrochemical biosensors. Fresenius' J. Anal. Chem. 369(1), 15-22.

    Google Scholar 

  50. J. Horacek and P. Skladal (1997). Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2,4-dichlorophenoxyacetic acid. Anal. Chim. Acta 347(1/2), 43-50.

    Google Scholar 

  51. R. C. Ebersole, J. A. Miller, J. R. Moran, and M. D. Ward (1990). Spontaneously formed functionally active avidin monolayers on metal surfaces: A strategy for immobilizing biological reagents and design of piezoelectric biosensors. J. Am. Chem. Soc. 112(8), 3239-3241.

    Google Scholar 

  52. M. M. Miller, P. E. Sheehan, R. L. Edelstein, C. R. Tamanaha, L. Zhong, S. Bounnak, L. J. Whitman, and R. J. Colton (2001). A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. J. Magn. Magn. Mater. 225(1/2), 156-160.

    Google Scholar 

  53. Y. R. Chemla, H. L. Grossman, Y. Poon, R. McDermott, R. Stevens, M. D. Alper, and J. Clarke (2000). Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc. Natl. Acad. Sci. 97, 26.

    Google Scholar 

  54. R. Raiteri, M. Grattarola, H.-J. Butt, and P. Skladal (2001). Micromechanical cantilever-based biosensors. Sens. Actuators B B79(2/3), 115-126.

    Google Scholar 

  55. B. Kasemo (1998). Biological surface science. Curr. Opin. Solid State Mater. Sci. 3(5), 451-459.

    Google Scholar 

  56. T. Natsume, H. Nakayama, and T. Isobe (2001). BIA-MS-MS: biomolecular interaction analysis for functional proteomics. Trends Biotechnol. 19(Suppl. 10), S28-S33.

    Google Scholar 

  57. D. L. Polla, A. G. Erdman, W. P. Robbins, D. T. Markus, J. Diaz-Diaz, R. Rizq, Y. Nam, H. T. Brickner, A. Wang, and P. Krulevitch (2000). Microdevices in medicine. Annu. Rev. Biom Ed. Eng. 2, 551-576.

    Google Scholar 

  58. C. L. Baird and D. G. Myszka (2001). Current and emerging commercial optical biosensors. J. Mol. Recognition. 14(5), 261-268.

    Google Scholar 

  59. N. Nath and A. Chilkoti (2002). A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74(3), 504-509.

    Google Scholar 

  60. S. Connolly, S. Cobbe, and D. Fitzmaurice (2001). Effects of ligand-receptor geometry and stoichiometry on protein-induced aggregation of biotin-modified colloidal gold. J. Phys. Chem. B 105(11), 2222-2226.

    Google Scholar 

  61. Y. W. Cao, R. Jin, and C. A. Mirkin (2001). DNA modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123(32), 7961-7962.

    Google Scholar 

  62. P. Englebienne, A. Van Hoonacker, and M. Verhas (2001). High-throughput screening using the surface plasmon resonance effect of colloidal gold nanoparticles. Analyst 126(10), 1645-1651.

    Google Scholar 

  63. D. Eck, C. A. Helm, N. J. Wagner, and K. A. Vaynberg (2001). Plasmon resonance measurements of the adsorption and adsorption kinetics of a biopolymer onto gold nanocolloids. Langmuir 17(4), 957-960.

    Google Scholar 

  64. T. A. Taton, G. Lu, and C. A. Mirkin (2001). Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc. 123(21), 5164-5165.

    Google Scholar 

  65. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz (2000). What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122(19), 4640-4650.

    Google Scholar 

  66. S. Connolly, S. N. Rao, and D. Fitzmaurice (2000). Characterization of protein aggregated gold nanocrystals. J. Am. Chem. Soc. 104(19), 4765-4776.

    Google Scholar 

  67. T. Okamoto, I. Yamaguchi, and T. Kobayashi (2000). Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt. Lett. 25(6), 372-374.

    Google Scholar 

  68. M. Himmelhaus and H. Takei (2000). Cap-shaped gold nanoparticles for an optical biosensor. Sens. Actuators, B B63(1/2), 24-30.

    Google Scholar 

  69. G. Bauer, F. Pittner, and T. Schalkhammer (1999). Metal nano-cluster biosensors. Mikrochim. Acta 131(1/2), 107-114.

    Google Scholar 

  70. H. Takei (1998). Biological sensor based on localized surface plasmon associated with surface-bound au/polystyrene composite microparticles. Proc. SPIE-Int. Soc. Opt. Eng. 3515, 278-283.

    Google Scholar 

  71. P. Englebienne (1998). Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123(7), 1599-1603.

    Google Scholar 

  72. G. Steiner, M. T. Pham, C. Kuhne, and R. Salzer (1998). Surface plasmon resonance within ion-implanted silver clusters. Fresenius' J. Anal. Chem. 362(1), 9-14.

    Google Scholar 

  73. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120(9), 1959-1964.

    Google Scholar 

  74. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 227(5329), 1078-1080.

    Google Scholar 

  75. G. Kalyuzhny, A. Vaskevick, G. Ashkenasy, and A. Shanzer (2000). UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films. J. Phys. Chem. B 104(34), 8238-8244.

    Google Scholar 

  76. A. Hilger, N. Cuppers, M. Tenfelde, and U. Kreibig (2000). Surface and interface effects in the optical properties of silver nanoparticles. Eur. Phys. J. D 10(1), 115-118.

    Google Scholar 

  77. G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein (2001). Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films J. Am. Chem. Soc. 123(12), 3177-3178.

    Google Scholar 

  78. M. Sanekata and I. Suzuka (2000). Physical and chemical interface effects on Mie plasmon absorption of sodium nanoclusters passivated with CH4-nCln (n = 1-4) molecules. Chem. Phys. Lett. 323(1/2), 98-104.

    Google Scholar 

  79. A. Henglein and D. Meisel (1998). Spectrophotometric observations of the adsorption of organosulfur compounds on colloidal silver nanoparticles. J. Phys. Chem. B 102(43), 8364-8366.

    Google Scholar 

  80. U. Kreibig, M. Gartz, and A. Hilger (1997). Mie resonances. Sensors for physical and chemical cluster interface properties. Ber. Bunsen-Ges. 101(11), 1593-1604.

    Google Scholar 

  81. J. M. Singer and C. M. Plotz (1956). The latex fixation test I Application to the serologic diagnosis of rheumatoid arthritis. Am. J. Med 21, 888-896.

    Google Scholar 

  82. T. A. Taton, C. A. Mirkin, and R. L. Letsinger (2000). Scanometric DNA array detection with nanoparticle probes. Science 289(5485), 1757-1760.

    Google Scholar 

  83. J. J. Storhoff, R. Elghanian, C. A. Mirkin, and R. L. Letsinger (2002). Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir 18(17), 6666-6670.

    Google Scholar 

  84. D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz (2003). Metallic colloid wavelength-ratiometric scattering sensors. Anal. Chem. 75(14), 3440-3445.

    Google Scholar 

  85. N. M. Green (1975). Avidin. Adv. Proten Chem. 29, 85-133.

    Google Scholar 

  86. L. S. Jung, K. E. Nelson, P. S. Stayton, and C. T. Campbell (2000). Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing Alkylthiolate Monolayers. Langmuir 16(24), 9421-9432.

    Google Scholar 

  87. V. H. Perez-Luna, M. J. O'Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton (1999). Molecular recognition between genetically engineered streptavidin and surface-bound biotin. J. Am. Chem. Soc. 121(27), 6469-6478.

    Google Scholar 

  88. M. Wilchek and E. A. Bayer (1998). in T. Cass and F. S. Ligler (Eds.), Avidin-Biotin Immobilization Systems, Oxford University Press, Oxford, pp. 15-34.

    Google Scholar 

  89. M. Suzuki, F. Ozawa, S. Wakako, and S. Aso (2002). Miniature surface-plasmon resonance immunosensors-Rapid and repetitive procedure. Anal. Bioanal. Chem. 372, 301-304.

    Google Scholar 

  90. N. J. Lynch, R. K. Kilpatrick, and R. G. Carbonell (1996). Aggregation of ligand-modified liposomes by specific interactions with proteins. II: Biotinylated liposomes and antibiotin antibody. Biotechnol. Bioeng. 50, 169-183.

    Google Scholar 

  91. M. Adamczyk, P. G. Mattingly, K. Shreder, and Z. Yu (1999). Surface Plasmon Resonance (SPR) as a tool for antibody conjugate analysis. Bioconjugate Chem. 10, 1032-1037.

    Google Scholar 

  92. P. Schuck (1997). Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between bilogical macromolecules. Annu. Rev. Biophys. Biomol. Struct. 26, 541-566.

    Google Scholar 

  93. L. S. Jung and C. T. Campbell (2000). Sticking probabilities in adsorption of alkanethiols from liquid ethanol solution onto gold. J. Phys. Chem. B 104(47), 11168-11178.

    Google Scholar 

  94. L. S. Jung and C. T. Campbell (2000). Sticking probabilities in adsorption from liquid solutions: Alkylthiols on gold. Phys. Rev. Lett. 84(22), 5164-5167.

    Google Scholar 

  95. B. L. Frey and R. M. Corn (1996). Covalent attachment and derivatization of poly(L-Lysine) monolayers on gold surfaces as characterized by polarization-modulation FT-IR spectroscopy Anal. Chem. 68(18), 3187-3193.

    Google Scholar 

  96. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann (1998). Surface-plasmon resonances in single metallic nanoparticles. Phys Rev. Lett. 80(19), 4249-4252.

    Google Scholar 

  97. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller (2000). Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 77(19), 2949-2951.

    Google Scholar 

  98. Y. Matsuo and K. Sasaki (2001). Time-resolved Laser scattering spectroscopy of a single metallic nanoparticle. Jpn. J. Appl. Phys. 40, 6143-6147.

    Google Scholar 

  99. J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz (2002). Composite plasmon resonant nanowires. Nano Lett. 2. Web Release date: 20-Apr.

  100. J. J. Mock, D. R. Smith, and S. Schultz (2003). Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 3(4), 485-491.

    Google Scholar 

  101. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, and J. Feldmann (2003). Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3(7), 935-938.

    Google Scholar 

  102. E. D. Palik (1985). Handbook of Optical Constants of Solids, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Van Duyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haes, A.J., Stuart, D.A., Nie, S. et al. Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms. Journal of Fluorescence 14, 355–367 (2004). https://doi.org/10.1023/B:JOFL.0000031817.35049.1f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000031817.35049.1f

Navigation