Skip to main content
Log in

Structural Diversity and Defensive Properties of Norditerpenoid Alkaloids

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We have tested the insect antifeedant and toxic activity of 43 norditerpenoid alkaloids on Spodoptera littoralis and Leptinotarsa decemlineata including eserine (physostigmine), anabasine, and atropine. Antifeedant effects of the test compounds were structure- and species-dependent. The most active antifeedants to L. decemlineata were 1,14-diacetylcardiopetaline (9) and 18-hydroxy-14-O-methylgadesine (33), followed by 8-O-methylconsolarine (12), 14-O-acetyldelectinine (27), karakoline (7), cardiopetaline (8), 18-O-demethylpubescenine (13), 14-O-acetyldeltatsine (18), takaosamine (21), ajadine (24), and 8-O-methylcolumbianine (6) (EC50 <1 μg/cm2). This insect showed a moderate response to atropine. S. littoralis had the strongest antifeedant response to 24, 18, 14-O-acetyldelcosine (19), and delphatine (29) (EC50 <3 μg/cm2). None of the model substances affected the feeding behavior of this insect. The most toxic compound to L. decemlineata was aconitine (1), followed by cardiopetalidine (10) (% mortality >60), 14-deacetylpubescenine (14), 18-O-benzoyl-18-O-demethyl-14-O-deacetylpubescenine (17), 14-O- acetyldelcosine (19), 14-deacetylajadine (25) and methyllycaconitine (30) (% mortality >45). Orally injected S. littoralis larvae were negatively affected by 1, cardiopetaline (8), 10, 1,14-O-acetylcardiopetalidina (11), 12, 14, 1,18-O-diacetyl-19-oxo-gigactonine (41), olivimine (43), and eserine in varying degrees. Their antifeedant or insecticidal potencies did not parallel their reported nAChR binding activity, but did correlate with the agonist/antagonist insecticidal/antifeedant model proposed for nicotininc insecticides. A few compounds [14, tuguaconitine (38), 14-demethyldelboxine (40), 19, dehydrodelsoline (36), 18-O-demethylpubescenine (13), 41, 9, and delcosine (23)] had selective cytotoxic effects to ward insect-derived Sf9 cells. None were cytotoxic to mammalian CHO cells and none increased Trypanosoma cruzi mortality. The selective cytotoxic effects of some structures indicate that they can act on biological targets other than neuroreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • ABBOTT, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18:265–267.

    Google Scholar 

  • ALBA, A., GRANDEZ, M., MEDINAVEITIA, A., DE LA FUENTE, G., and GAVIN, J. A. 2004a. Seven new norditerpenoid alkaloids from Spanish Consolida orientalis. Hel. Chim. Acta. 87.

  • ALBA, A., GRANDEZ, M., MEDINAVEITIA, A., DE LA FUENTE, G., and GAVIN, J. A. 2004b. Three new norditerpenoid alkaloids from Consolida orientalis. Chem. Pharm. Bull. 52.

  • ATTA-UR-RAHMAN and CHOUDARY, M. I. 1995. Diterpenoid and steroidal alkaloids. Nat. Prod. pep.12:361–379.

    Google Scholar 

  • BLOOMQUIST, J. R. 2001. GABA and glutamate receptors as biochemical sites for insecticide action, pp. 17–41, inI. Ishaaya (ed.). Biochemical Sites of Insecticide Action and Resistance. Springer-Verlag, Berlin.

    Google Scholar 

  • COHEN, R. W., MAHONEY, D. A., and CAN, H. D. 2002. Possible regulation of feeding behavior in cockroach nymphs by the neurotransmitter octopamine. J. Insect Behav.15:37–50.

    Google Scholar 

  • DE LA FUENTE, G. and REINA, M. 1990. Some phytochemical studies of Aconitum, Delphinium and Consolidagenera. Collect. Bot .19:129–140.

    Google Scholar 

  • DE LA FUENTE, G. and RUIZ-MESIA, L. 1994. Norditerpenoid alkaloids from Aconitum vulpariasubsp. Neapolitanum. Phytochemistry 37:271–274.

    Google Scholar 

  • DOBELIS, P., MADL, J. E., PFISTER, J. A., MANNERS, G. D., and WALROND, J. P. 1999. Effects of Delphiniumalkaloids on neuromuscular transmission. J. Pharm. Exp. Ther.291:538–546.

    Google Scholar 

  • FRIESE, J., GLEITZ, J., GUTSTER, U. T., HENBACH, J. F., MATTHIESEN, T., WILFFERT, B., and SELVE, N. 1997. Aconitumsp alkaloids: The modulation of voltage-dependent Na+ channels, toxicity and antinoniceptive properties. Eur. J. Pharmacol.337:165–174.

    Google Scholar 

  • GONZÁLEZ, A. G., DE LA FUENTE, G., MUNGUIA, O., and HENRICK, K. 1981. Structure of 18-hydroxy-14-O-methylgadesine. A new diterpene alkaloid from Consolida orientalis. Tetrahedron Lett .22:4843–4844.

    Google Scholar 

  • GONZÁLEZ, A. G., DE LA FUENTE, G., REINA, M., and DÍAZ, R. 1986. The structures of four new diterpenoids alkaloids. Heterocycles 24:1513–1516.

    Google Scholar 

  • GONZÁLEZ-COLOMA, A., GUADAÑO, A., DE INÉS, C., MARTINEZ-DÍAZ, R., and CoRTES, D. 2002a.Selective action of acetogenin mitochondrial Complex I inhibitors. Z. Naturforsch C 57:1028–1034.

    Google Scholar 

  • GONZÁLEZ-COLOMA, A., GUADAÑO, A., GUTIÉRREZ, C., CABRERA, R., DE LA PE ÑA, E., DE LA FUENTE, G., and REINA,M. 1998. Antifeedant Delphinium diterpene alkaloids. structure-activity relationships. J. Agric. Food Chem.46:286–290.

    Google Scholar 

  • GONZÁLEZ-COLOMA, A., VALENCIA, F., MARTÍN, N., HOFFMANN, J. J., HUTTER, L., MARCO, J. A., and REINA, M. 2002b. Silphinene sesquiterpenes as model insect antifeedants. J. Chem. Ecol.28:117–129.

    Google Scholar 

  • GRANDEZ, M., MEDINAVEITIA, A., GAVIN, J. A., ALVA, A., and DE LA FUENTE, G. 2002. Alkaloids from Consolida oliveriana. J. Nat. Prod.65:513–516.

    Google Scholar 

  • HARDICK, D. J., BLAGBROUGH, I. S., COOPER, G., POTTER, B. V., CRITCHLEY, T., and WONNACOTT, S. 1996. Nudicauline and elatine as potent norditerpenoid ligands at rat neuronal alpha-bungarotoxin binding sites: Importance of the (methylsuccinimido) benzoyl moiety for neuronal nicotinic acetylcholine receptor binding. J. Med. Chem.39:4860–4866.

    Google Scholar 

  • HEINZ, C. A., ZANGERL, A. R., and BERENBAUM, M. 1996. Effects of natural and synthetic neuroactive substances on the growth and feeding of cabbage looper Trichoplusia ni. Entomol. Exp. Appl.80:443–451.

    Google Scholar 

  • HORTON, R. D. and REDAK, R. A. 1993. Further comments on analysis of covariance in insect dietary studies. Entomol. Exp. Appl.69:263–275.

    Google Scholar 

  • JENNINGS, K. R., BROWN, D. G., and WRIGHT, D. P. J. 1986. Methyllycaconitine, a naturally occuring insecticide with a high affinity for the insect cholinergic receptor. Experientia 42:611–613.

    Google Scholar 

  • KNUEPFER, M. M. and GAN, Q. 1999. Role of cholinergic receptors and cholinesterase activity in hemodynamic responses to cocaine in conscious rats. Am. J. Physiol.276:R103–R112.

    Google Scholar 

  • KUKEL, C. F. and JENNINGS, K. R. 1994. Delphiniumalkaloids as inhibitors of a-bungarotoxin binding to rat and insect neural membranes. Can. J. Physiol. Pharmacol.72:104–107.

    Google Scholar 

  • LIU, M.-Y., LATLI, B., and CASIDA, J. E. 1995. Imidacloprid binding site in Muscanicotinic acetylcholine receptor: Interactions with physostigmine and a variety of nicotinic agonists with chloropyridyl and chlorothiazolyl substituents. Pestic. Biochem. Physiol. 52:170–181.

    Google Scholar 

  • MOSSMAN, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.

    Google Scholar 

  • MULLIN, C. A., GONZÁLEZ-COLOMA, A., GUTIÉRREZ, C., REINA, M., EICHENSEER, H., HOLLISTER, B., and CHYB, S. 1997. Antifeedant effects of some novel terpenoids on Chrysomelidae beetles: Comparisons with alkaloids on an alkaloid-adapted and a non-adapted species. J. Chem. Ecol. 23:1851–1866.

    Google Scholar 

  • NAUEN, R., EBBINGHAUS, U., and TIETJEN, K. 1999. Ligands of the nicotinic acetylcholine receptor as insecticides. Pestic. Sci. 55:566–614.

    Google Scholar 

  • PANTER, K. E., MANNERS, G. D., STEGELMEIER, B. L., GARDNER, D. R., RALPHS, M. H., PFISTER, J. A., and JAMES, L. F. 2002. Larkspur poisoning: Toxicology and alkaloid structure-activity relationships. Biochem. Syst. Ecol. 30:113–128.

    Google Scholar 

  • RALPHS, M. H., GARDNER, D. R., TURNER, D. L., PFISTER, J. A., and THACKER, E. 2002. Predicting toxicity of tall larkspur (Delphinium barbeyi): Measurement of the variation alkaloid concentration among plants and among years. J. Chem. Ecol. 28:2327–2341.

    Google Scholar 

  • RALPHS, M. M. and GARDNER, D. R. 2003. Distribution of norditerpene alkaloids in tall larkspur plant parts through the growing season. J. Chem. Ecol.29:2013–2021.

    Google Scholar 

  • RAUBENHEIMER, D. and SIMPSON, S. J. 1992. Analysis of covariance: An alternative to nutritional indices. Entomol. Exp. Appl. 62:221–231.

    Google Scholar 

  • REINA, M., GONZÁLEZ-COLOMA, A., GUTIÉRREZ, C., CABRERA, R., RODRÍGUEZ, M. L., FAJARDO, V., and VILLARROEL, L. 2001. Defensive chemistry of Senecio miser Hook. J. Nat. Prod .64:6–11.

    Google Scholar 

  • REINA, M., NOLD, M., SANTANA, O., ORIHUELA, J. C., and GONZÁLEZ-COLOMA, A. 2002. C-5 substituted antifeedant silphinene sesquiterpenes. J. Nat. Prod.65:448–453.

    Google Scholar 

  • SANES, J. R., PRESCOTT, D. J., and HILDEBRAND, J. G. 1977. Cholinergic neurochemical development of normal and deafferented antennal lobes during metamorphosis of the koth Manduca sexta. Brain. Res .119:389–402.

    Google Scholar 

  • SEITZ, U. and AMERI, A. 1998. Different effects of [3H] noradrenaline uptake of the aconitum alkaloids aconitine, 3-acetylaconitine, lappaconitine, and N-desacetyllappaconitine in rat hippocampus. Biochem. Pharmacol.55:883–888.

    Google Scholar 

  • STEGELMEIER, B. L., PANTER, K. E., PFISTER, J. A., JAMES, L. F., MANNERS, G. D., GARDNER, D. R., RALPHS, M. H., and OLSEN, J. D. 1998. Experimental modification of larkspur (Delphiniumspp) toxicity, pp. 205–210, inT. Gardland and G. Barr (eds.). Toxic Plants and Other Natural Toxicants. CAB International, New York.

    Google Scholar 

  • SULTANA, I., IKEDA, I., and OZOE, Y. 2002. Structure-activity relationships of benzylidene anabasines in nicotinic acetylcholine receptors of cockroach nerve cords. Bioorg. Med. Chem.10:2963–2971.

    Google Scholar 

  • ULUBELEN, A., MERICLI, A., KILINCER, N., FERIZLI, A. G., EMECKI, M., and PELLETIER, W. 2001. Insect repellent activity of diterpenoid alkaloids. Phytother. Res.15:170–171.

    Google Scholar 

  • WINK, M., SCHMELLER, T., and LATZ-BRÜNING, B. 1998. Modes of action of allelochemical alkaloids: Interaction with neuroreceptors, DNA and other molecular targets. J. Chem. Ecol.24:1881–1937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azucena González-Coloma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Coloma, A., Reina, M., Medinaveitia, A. et al. Structural Diversity and Defensive Properties of Norditerpenoid Alkaloids. J Chem Ecol 30, 1393–1408 (2004). https://doi.org/10.1023/B:JOEC.0000037747.74665.0a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000037747.74665.0a

Navigation