Skip to main content
Log in

Analysis of Somatic Hypermutation and Antigenic Selection in the Clonal B Cell in Immunoglobulin Light Chain Amyloidosis (AL)

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Light chain amyloidosis (AL) is a protein folding disorder with an underlying B cell neoplasia where the monoclonal immunoglobulin light chains (LCs) produced from insoluble amyloid fibrils. The deposition of these fibrillar aggregates in vital organs causes severe organ dysfunction over time and is associated with high mortality. We have identified the postgerminal center status of the B cell clone by evaluating the presence of somatic hypermutation in the variable region of the LC gene in 27 (13 of the λ and 14 of the κ subtype) AL patients. Seven of the 27 clones showed statistically significant evidence of antigenic selection, using a multinomial algorithm. The framework region mutations were selected for conservation of protein structure in 13 of the 27 patients. Additionally, mutational clusterspots were identified at specific positions in the nucleotide and deduced protein sequence that could potentially contribute to destabilizing interactions resulting in a propensity to form amyloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Gertz MA, Lacy MQ, Dispenzieri A: Amyloidosis. Hematol Oncol Clin North Am 13:1211–1233, ix, 1999

    PubMed  Google Scholar 

  2. Buxbaum J: Mechanisms of disease: Monoclonal immunoglobulin deposition. Amyloidosis, light chain deposition disease, and light and heavy chain deposition disease. Hematol Oncol Clin North Am 6:323–346, 1992

    PubMed  Google Scholar 

  3. Gertz MA: Secondary amyloidosis (AA). J Intern Med 232:517–518, 1992

    PubMed  Google Scholar 

  4. Nichols MR, Moss MA, Reed DK, Lin WL, Mukhopadhyay R, Hoh JH, Rosenberry TL: Growth of beta-amyloid(1-40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Biochemistry 41:6115–6127, 2002

    PubMed  Google Scholar 

  5. Kangas H, Seidah NG, Paunio T: Role of proprotein convertases in the pathogenic processing of the amyloidosis-associated form of secretory gelsolin. Amyloid 9:83–87, 2002

    PubMed  Google Scholar 

  6. Revesz T, Holton JL, Lashley T, Plant G, Rostagno A, Ghiso J, Frangione B: Sporadic and familial cerebral amyloid angiopathies. Brain Pathol 12:343–357, 2002

    PubMed  Google Scholar 

  7. Gertz MA, Kyle RA, Thibodeau SN: Familial amyloidosis: A study of 52 North American-born patients examined during a 30-year period. Mayo Clin Proc 67:428–440, 1992

    PubMed  Google Scholar 

  8. Dwulet FE, O'Connor TP, Benson MD: Polymorphism in a kappa I primary (AL) amyloid protein (BAN). Mol Immunol 23:73–78, 1986

    PubMed  Google Scholar 

  9. Stevens FJ, Argon Y: Pathogenic light chains and the B-cell reper-toire. Immunol Today 20:451–457, 1999

    PubMed  Google Scholar 

  10. Hurle MR, Helms LR, Li L, Chan W, Wetzel R: A role for desta-bilizing amino acid replacements in light-chain amyloidosis. Proc Natl Acad Sci USA 91:5446–5450, 1994

    PubMed  Google Scholar 

  11. Wall J, Murphy CL, Solomon A: In vitro immunoglobulin light chain fibrillogenesis. Methods Enzymol 309:204–217, 1999

    PubMed  Google Scholar 

  12. Wall J, Schell M, Murphy C, Hrncic R, Stevens FJ, Solomon A: Ther-modynamic instability of human lambda 6 light chains: Correlation with fibrillogenicity. Biochemistry 38:14101–14108, 1999

    PubMed  Google Scholar 

  13. Solomon A, Frangione B, Franklin EC: Bence Jones proteins and light chains of immunoglobulins. Preferential association of the V lambda VI subgroup of human light chains with amyloidosis AL (lambda). J Clin Invest 70:453–460, 1982

    PubMed  Google Scholar 

  14. Perfetti V, Casarini S, Palladini G, Vignarelli MC, Klersy C, Diegoli M, Ascari E, Merlini G: Analysis of V(lambda)-J(lambda) expres-sion in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r (lambdaIII) as a new amyloid-associated germline gene segment. Blood 100:948–953, 2002

    PubMed  Google Scholar 

  15. Comenzo RL, Zhang Y, Martinez C, Osman K, Herrera GA: The tropism of organ involvement in primary systemic amyloidosis: Con-tributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood 98:714–720, 2001

    PubMed  Google Scholar 

  16. Abraham RS, Geyer SM, Price-Troska TL, Allmer C, Kyle RA, Gertz MA, Fonseca R: Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood 101:3801–3808, 2003

    PubMed  Google Scholar 

  17. Helms LR, Wetzel R: Specificity of abnormal assembly in im-munoglobulin light chain deposition disease and amyloidosis. J Mol Biol 257:77–86, 1996

    PubMed  Google Scholar 

  18. Helms LR, Wetzel R: Destabilizing loop swaps in the CDRs of an immunoglobulin VL domain. Protein Sci 4:2073–2081, 1995

    PubMed  Google Scholar 

  19. Stevens PW, Raffen R, Hanson DK, Deng YL, Berrios-Hammond M, Westholm FA, Murphy C, Eulitz M, Wetzel R, Solomon A, et al.: Recombinant immunoglobulin variable domains generated from synthetic genes provide a system for in vitro characterization of light-chain amyloid proteins. Protein Sci 4:421–432, 1995

    PubMed  Google Scholar 

  20. Wetzel R: Domain stability in immunoglobulin light chain deposi-tion disorders. Adv Protein Chem 50:183–242, 1997

    PubMed  Google Scholar 

  21. Davis PD, Raffen R, Dul LJ, Vogen MS, Williamson KE, Stevens JF, Argon Y: Inhibition of amyloid fiber assembly by both BiP and its target peptide. Immunity 13:433–442, 2000

    PubMed  Google Scholar 

  22. Chan W, Helms LR, Brooks I, Lee G, Ngola S, McNulty D, Maleeff B, Hensley P, Wetzel R: Mutational effects on inclusion body formation in the periplasmic expression of the immunoglobu-lin VL domain REI. Fold Des 1:77–89, 1996

    PubMed  Google Scholar 

  23. Denoroy L, Deret S, Aucouturier P: Overrepresentation of the V kappa IV subgroup in light chain deposition disease. Immunol Lett 42:63–66, 1994

    PubMed  Google Scholar 

  24. Perfetti V, Ubbiali P, Vignarelli MC, Diegoli M, Fasani R, Stoppini M, Lisa A, Mangione P, Obici L, Arbustini E, Merlini G: Evidence that amyloidogenic light chains undergo antigen-driven selection. Blood 91:2948–2954, 1998

    PubMed  Google Scholar 

  25. Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K: Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but showno intraclonal variation. Blood 80:2326–2335, 1992

    PubMed  Google Scholar 

  26. Vescio RA, Cao J, Hong CH, Lee JC, Wu CH, Der Danielian M, Wu V, Newman R, Lichtenstein AK, Berenson JR: Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity. J Immunol 155:2487–2497, 1995

    PubMed  Google Scholar 

  27. Sahota SS, Leo R, Hamblin TJ, Stevenson FK: Ig VH gene muta-tional patterns indicate different tumor cell status in human myeloma and monoclonal gammopathy of undetermined significance. Blood 87:746–755, 1996

    PubMed  Google Scholar 

  28. Sahota SS, Leo R, Hamblin TJ, Stevenson FK: Myeloma VLand VH gene sequences reveal a complementary imprint of antigen selection in tumor cells. Blood 89:219–226, 1997

    PubMed  Google Scholar 

  29. Sahota SS, Forconi F, Ottensmeier CH, Provan D, Oscier DG, Hamblin TJ, Stevenson FK: Typical Waldenstrom macroglobuline-mia is derived from a B-cell arrested after cessation of somatic mu-tation but prior to isotype switch events. Blood 100:1505–1507, 2002

    PubMed  Google Scholar 

  30. Lossos IS, Okada CY, Tibshirani R, Warnke R, Vose JM, Greiner TC, Levy R: Molecular analysis of immunoglobulin genes in diffuse large B-cell lymphomas. Blood 95:1797–1803, 2000

    PubMed  Google Scholar 

  31. Lossos IS, Alizadeh AA, Eisen MB, Chan WC, Brown PO, Botstein D, Staudt LM, Levy R: Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc Natl Acad Sci USA 97:10209–10213, 2000

    PubMed  Google Scholar 

  32. Comenzo RL, Michelle D, LeBlanc M, Wally J, Zhang Y, Kica G, Karandish S, Arkin CF, Wright DG, Skinner M, McMannis J: Mobilized CD34 C cells selected as autografts in patients with pri-mary light-chain amyloidosis: Rationale and application. Transfu-sion 38:60–69, 1998

    Google Scholar 

  33. Comenzo RL, Wally J, Kica G, Murray J, Ericsson T, Skinner M, Zhang Y: Clonal immunoglobulin light chain variable region germline gene use in AL amyloidosis: Association with dominant amyloid-related organ involvement and survival after stem cell trans-plantation. Br J Haematol 106:744–751, 1999

    PubMed  Google Scholar 

  34. Welschof M, Terness P, Kolbinger F, Zewe M, Dubel S, Dorsam H, Hain C, Finger M, Jung M, Moldenhauer G, et al.: Amino acid se-quence based PCR primers for amplification of rearranged human heavy and light chain immunoglobulin variable region genes. J Im-munol Methods 179:203–214, 1995

    Google Scholar 

  35. Street AG, Mayo SL: Intrinsic beta-sheet propensities result from van der Waals interactions between side chains and the local back-bone. Proc Natl Acad Sci USA 96:9074–9076, 1999

    PubMed  Google Scholar 

  36. Minor DL, Jr, Kim PS: Measurement of the beta-sheet-forming propensities of amino acids. Nature 367:660–663, 1994

    PubMed  Google Scholar 

  37. Chang B, Casali P: The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today 15:367–373, 1994

    PubMed  Google Scholar 

  38. Jukes TH, King JL: Evolutionary nucleotide replacements in DNA. Nature 281:605–606, 1979

    PubMed  Google Scholar 

  39. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG: The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–811, 1987

    PubMed  Google Scholar 

  40. Dorner T, Brezinschek HP, Brezinschek RI, Foster SJ, Domiati-Saad R, Lipsky PE: Analysis of the frequency and pattern of somatic mutations within nonproductively rearranged human variable heavy chain genes. J Immunol 158:2779–2789, 1997

    PubMed  Google Scholar 

  41. Clarke SH, Huppi K, Ruezinsky D, Staudt L, Gerhard W, Weigert M: Inter-and intraclonal diversity in the antibody response to influenza hemagglutinin. J Exp Med 161:687–704, 1985

    PubMed  Google Scholar 

  42. Wu TT, Kabat EA: An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132:211–250, 1970

    PubMed  Google Scholar 

  43. Kabat EA, Wu TT, Bilofsky H, Reid-Miller M, Perry H: Sequences of Proteins of Immunological Interest, Bethesda, US Govt Printing Office, 1983

  44. Pokkuluri PR, Solomon A, Weiss DT, Stevens FJ, Schiffer M: Ter-tiary structure of human lambda 6 light chains. Amyloid 6:165–171, 1999

    PubMed  Google Scholar 

  45. Schormann N, Murrell J, Liepnieks J, Benson M: Tertiary struc-ture of an amyloid immunoglobulin light chain protein: A pro-posed model for amyloid fibril formation. Proc Natl Acad Sci USA 92:9490–9494, 1995

    PubMed  Google Scholar 

  46. Jacobs H, Bross L: Towards an understanding of somatic hypermu-tation. Curr Opin Immunol 13:208–218, 2001

    PubMed  Google Scholar 

  47. Rogozin IB, Kolchanov NA: Somatic hypermutagenesis in im-munoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta 1171:11–18, 1992

    PubMed  Google Scholar 

  48. Shlomchik MJ, Aucoin AH, Pisetsky DS, Weigert MG: Structure and function of anti-DNA autoantibodies derived from a single au-toimmune mouse. Proc Natl Acad Sci USA 84:9150–9154, 1987

    PubMed  Google Scholar 

  49. Jolly CJ, Wagner SD, Rada C, Klix N, Milstein C, Neuberger MS: The targeting of somatic hypermutation. Semin Immunol 8:159–168, 1996

    PubMed  Google Scholar 

  50. Gurrieri C, McGuire P, Zan H, Yan X, Cerutti A, Albesiano E, Allen S, Vinciguerra V, Rai K, Ferrarini M, Casali P, Chiorazzi N: Chronic lymphocytic leukemia B cells can undergo somatic hypermutation and intraclonal immunoglobulin V(H)DJ(H) gene diversification. J Exp Med 196:629–639, 2002

    PubMed  Google Scholar 

  51. Matolcsy A, Schattner EJ, Knowles DM, Casali P: Clonal evolution of B cells in transformation from low-to high-grade lymphoma. Eur J Immunol 29:1253–1264, 1999

    PubMed  Google Scholar 

  52. Bahler DW, Levy R: Clonal evolution of a follicular lymphoma: Evidence for antigen selection. Proc Natl Acad Sci USA 89:6770–6774, 1992

    PubMed  Google Scholar 

  53. Marafioti T, Hummel M, Anagnostopoulos I, Foss HD, Falini B, Delsol G, Isaacson PG, Pileri S, Stein H: Origin of nodular lymphocyte-predominant Hodgkin's disease from a clonal expan-sion of highly mutated germinal-center B cells. N Engl J Med 337:453–458, 1997

    PubMed  Google Scholar 

  54. Ralph QM, Brisco MJ, Joshua DE, Brown R, Gibson J, Morley AA: Advancement of multiple myeloma from diagnosis through plateau phase to progression does not involve a new B-cell clone: Evidence from the Ig heavy chain gene. Blood 82:202–206, 1993

    PubMed  Google Scholar 

  55. Ciric B, VanKeulen V, Rodriguez M, Kyle RA, Gertz MA, Pease LR: Clonal evolution in Waldenstrom macroglobulinemia highlights functional role of B-cell receptor. Blood 97:321–323, 2001

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, R.S., Geyer, S.M., Ramírez-Alvarado, M. et al. Analysis of Somatic Hypermutation and Antigenic Selection in the Clonal B Cell in Immunoglobulin Light Chain Amyloidosis (AL). J Clin Immunol 24, 340–353 (2004). https://doi.org/10.1023/B:JOCI.0000029113.68758.9f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCI.0000029113.68758.9f

Navigation