Skip to main content
Log in

Equivalencies, Identities, Symmetric Differences, and Congruencies in Orthomodular Lattices

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that operations of equivalence cannot serve for building algebras which would induce orthomodular lattices as the operations of implication can. Several properties of equivalence operations have been investigated. Distributivity of equivalence terms and several other 3-variable expressions involving equivalence terms have been proved to hold in any orthomodular lattice. Symmetric differences have been shown to reduce to complements of equivalence terms. Some congruence relations related to equivalence operations and symmetric differences have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, J. C. (1969). Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Boston.

    Google Scholar 

  • Abbott, J. C. (1976). Orthoimplication algebra. Studia Logicas 35, 173–177.

    Google Scholar 

  • Beran, L. (1985). Orthomodular Lattices; Algebraic Approach, D. Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Clark, I. D. (1973). An axiomatization of quantum logic. Journal of Symbolic Logic 38, 389–392.

    Google Scholar 

  • D'Hooghe, B. and Pykacz, J. (2000). On some new operations on orthomodular lattices. International Journal of Theoretical Physics 39, 641–652.

    Google Scholar 

  • Dorfer, G. (2002). Non-commutative symmetric differences in orthomodular lattices. Preprint arXiv.org/abs/math.RA/O211237.

  • Dorfer, G., Dvurečenskij, A., and Länger, H. (1996). Symmetric differences in orthomodular lattices. Mathematica Slovaca 5, 435–444.

    Google Scholar 

  • Georgacarakos, G. N. (1980). Equationally definable implication algebras for orthomodular lattices. Studia Logica 39, 5–18.

    Google Scholar 

  • Hardegree, G. M. (1981a). Quasi-implication algebras, part I: Elementary theory. Algebra Universalis 12, 30–47.

    Google Scholar 

  • Hardegree, G. M. (1981b). Quasi-implication algebras, part II: Structure theory. Algebra Universalis 12, 48–65.

    Google Scholar 

  • Kimble, R. J., Jr. (1969). Ortho-implication algebras. Notices of the American Mathematical Society 16, 772–773.

    Google Scholar 

  • Megill, N. D. and Pavičić, M. (2000). Equations, states, and lattices of infinite-dimensional Hilbert space. International Journal of Theoretical Physics 39, 2349–2391. (xarXiv.org/abs/quant-ph/0009038)

    Google Scholar 

  • Megill, N. D. and Pavičić, M. (2001). Orthomodular lattices and a quantum algebra. International Journal of Theoretical Physics 40, 1387–1410. (arXiv.org/abs/quantph/0103135)

    Google Scholar 

  • Megill, N. D. and Pavičić, M. (2002). Deduction, ordering, and operations in quantum logic. Foundation of Physics 32, 357–378. (arXiv.org/abs/quantph/0108074)

    Google Scholar 

  • Megill, N. D. and Pavičić, M. (2003). Quantum implication algebras. International Journal of Theoretical Physics 42, 2825–2840.

    Google Scholar 

  • Pavičić, M. (1989). Unified quantum logic. Foundation of Physics 19, 999–1016.

    Google Scholar 

  • Pavičić, M. (1993). Nonordered quantum logic and its YES–NO representation. International Journal of Theoretical Physics 32, 1481–1505.

    Google Scholar 

  • Pavičić, M. (1998). Identity rule for classical and quantum theories. International Journal of Theoretical Physics 37, 2099–2103.

    Google Scholar 

  • Pavičić, M. and Megill, N. D. (1998a). Binary orthologic with modus ponens is either orthomodular or distributive. Helvetica Physica Acta 71, 610–628.

    Google Scholar 

  • Pavičić, M. and Megill, N. D. (1998b). Quantum and classical implication algebras with primitive implications. International Journal of Theoretical Physics 37, 2091–2098.

    Google Scholar 

  • Pavičić, M. and Megill, N. D. (1999). Non-orthomodular models for both standard quantum logic and standard classical logic: Repercussions for quantum computers. Helvetica Physics Acta 72, 189–210. (arXiv.org/abs/quant-ph/9906101)

    Google Scholar 

  • Piziak, R. (1974). Orthomodular lattices as implication algebras. J. Philosophical Logic 3, 413–438.

    Google Scholar 

  • Pykacz, J. (2000). New operations on orthomodular lattices: “Disjunction” and “conjunction” induced by Mackey decompositions. Notre Dame Journal of Formal Logic 41, 59–77.

    Google Scholar 

  • Zhang, J. and Zhang, H. (1995). SEM: A system for enumerating models. In Proceedings of the International Joint Conference on ArtiJicia1 Intelligence, Morgan Kaufmann, Los Altos, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Megill, N.D., Pavičić, M. Equivalencies, Identities, Symmetric Differences, and Congruencies in Orthomodular Lattices. International Journal of Theoretical Physics 42, 2797–2805 (2003). https://doi.org/10.1023/B:IJTP.0000006006.18494.1c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000006006.18494.1c

Navigation