Skip to main content
Log in

Noncommutative Field Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose noncommutative space-time and a method to construct noncommutative field theory in terms of a covariant ★-product Moyal algebra and to study those physical and mathematical consequences. We consider noncommutative quantum electrodynamics. The prescription involves calculating the trace-like averaging procedure of noncommutative spacetime, leading to the nonlocal theory. From experimental data on testing the local theory it follows that θ ≲ 7 ⋅ 10−32 m 2, where θ is the dimensionful scale of the tensor θμν characterizing noncommutative properties of spacetime arising from low-energy limit of string theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ardalan, E., Arfaei, H., and Shiekh-Jabbari, M. M. (1998). Preprint hep-th/9803067.

  • Ardalan, E., Arfaei, H., and Shiekh-Jabbari, M. M. (1999). Journal of High Energy Physics 9902, 016. Preprint hep-th/9810072.

    Google Scholar 

  • Athanasiu, G. G., Floratos, E. G., and Nicolis, S. (1996). Holomorphic quantization on the torus and finite quantum mechanics. Journal of Physics A: Mathematical and General 29, 6737. Preprint hep-th/9509098.

    Google Scholar 

  • Banerjee, R. (2002). Modern Physics Letters A 17, 631.

    Google Scholar 

  • Banks, T., Fischler, W., Shenker, S. H., and Susskind, L. (1997). M theory as a matrix model: A conjecture. Physical Review D: Particles and Fields 55, 5112. Preprint hep-th/9610043.

    Google Scholar 

  • Bertotti, B., Farinella, P., Milani, A., Nobili, A. M., and Sacerdote, F. (1984). Linking reference systems from space. Astron. Astrophy. 133, 231-238.

    Google Scholar 

  • Bigatti, D. and Susskind, L. (2000). Magnetic fields, branes and noncommutative geometry, Physical Review D 62, 066004. Preprint hep-th/9908056.

    Google Scholar 

  • Bogolubov, N. N. and Shirkov, D. V. (1980). Introduction to the Theory of Quantized Fields, 3rd ed. Wiley-Interscience, New-York.

    Google Scholar 

  • Bolonek, K. and Kosinski, P. (2002). Physics Letters B 547, 51.

    Google Scholar 

  • Caetano, A. S. and Felder, G. (1999). A Path integral approach to the Kontsevich quantization formula math Q A/9902090.

  • Carey, R. M. et al. (1999). Physical Review Letters 82, 1632.

    Google Scholar 

  • Chaichian, M., Demichev, A., and Prešnajder, P. (2000a). Nuclear Physics B 567, 360. Preprint hep-th/9812180.

    Google Scholar 

  • Chaichian, M., Demichev, A., and Prešnajder, P. (2000b) Journal of Mathematical Physics 41, 185. Preprint hep-th/9904132.

    Google Scholar 

  • Chaichian, M., Demichev, A., and Prešnajder, P., Sheikh-Jabbari, M. M., and Tureanu, A. (2001a). Nuclear Physics B 611, 383-402.

    Google Scholar 

  • Chaichian, M., Sheikh-Jabbari, M. M., and Tureanu, A. (2001b). Hydrogen atom spectrum and the Lamb shift in noncommutative QED, Physical Review Letters 86, 2716.

    Google Scholar 

  • Chaichian, M., Sheikh-Jabbari, M. M., and Tureanu, A. (2000c). Space-time noncommutativity, discreteness of time and unitarity. Preprint hep-th/0007156.

  • Connes, A. (1994). Noncommutative Geometry, Academic Press, New York.

    Google Scholar 

  • Connes, A., Douglas, M. R., and Schwarz, A. (1998). Noncommutative geometry and Matrix Theory: Compactification on tori. Journal of High Energy Physics 9802, 003. Preprint hep-th/9711162.

    Google Scholar 

  • Cutkosky, R. E. (1960). Journal of Mathematical Physics 1, 429.

    Google Scholar 

  • Czarnecki, A. and Marciano, W. J. (2001). Physical Review D: Particles and Fields 64, 013014.

    Google Scholar 

  • de Wit, B., Hoppe, J., and Nicolai, H. (1988). On the quantum mechanics of supermembranes. Nuclear Physics B 305, 545.

    Google Scholar 

  • Doplicher, S., Fredenhagen J., and Roberts, J. E. (1995). Communications of Mathematical Physics 172, 187.

    Google Scholar 

  • Douglas, M. R. and Nekrasov, N. A. (2001). Review of Modern Physics 73, 977.

    Google Scholar 

  • Dunne, G. V., Jackiw, R., and Trugenberger, C. A. (1990). “Topological” (Chern–Simons) quantum mechanics, Physical Review D: Particles and Fields 41, 661.

    Google Scholar 

  • Dunne, G. V. and Jackiw, R. (1993), “Peierls” substitution and Chern–Simons quantum mechanics, Nuclear Physics C 33(Proc. Suppl.), 114. Preprint hep-th/9204057.

    Google Scholar 

  • Duval, C. and Horvathy, P. A. (2000). The “Peierls” substitution and the exotic Galilei group. Physics Letters B 479, 284. Preprint hep-th/0002233.

    Google Scholar 

  • Efimov, G. V. (1977). Nonlocal Interactions of Quantized Fields, Nauka, Moscow.

    Google Scholar 

  • Filk, T. (1996). Physics Letters B 376, 53.

    Google Scholar 

  • Floratos, E. G. and Nicolis, S. (2000). Quantum mechanics on the hypercube. Preprint hep-th/0006006.

  • Gamboa, J., Loewe, M., and Rojas, J. C. (2000). Noncommutative quantum mechanics. Preprint hep-th/0010220.

  • Gomis, J. and Mehen, T. (2000). Nuclear Physics B 591, 265. Preprint hep-th/0005129.

    Google Scholar 

  • Gracia-Bondi, J. M., Varilly, J. C., and Figueroa, V. (2000). Elements of Noncommutative Geometry, Birkhäuser, Boston.

    Google Scholar 

  • Grosse, H., Klimčik, C., and Prešnajder, P. (1996a). International Journal of Theoretical Physics 35, 231.

    Google Scholar 

  • Grosse, H., Klimčik, C., and Prešnajder, P. (1996b). Communications of Mathematical Physics 178, 507.

    Google Scholar 

  • Grosse, H., Klimčik, C., and Prešnajder, P. (1997). Communication of Mathematical Physics 185, 155.

    Google Scholar 

  • Huang, W. H. (2001). Casimir effect on the radius stabilization of the noncommutative torus. Physics Letters B 497, 317-322.

    Google Scholar 

  • Hughes, V. W., and Kinoshita, T. (1999). Review of Modern Physics 71, 5133.

    Google Scholar 

  • Ishibashi, N., Kawai, H., Kitazawa, Y., and Tsuchiya, A. (1997). A large-N reduced model as superstring. Nuclear Physics B 498, 467. Preprint hepth/9612115.

    Google Scholar 

  • Jonke, L. and Meljanac, S. (2002). Preprint hep-th/0210042.

  • Kimura, Y. (2001). Noncommutative gauge theories on fuzzy sphere and fuzzy torus from matrix model. Progress of Theoretical Physics 106, 445-469.

    Google Scholar 

  • Kinoshita, T. (2001). Preprint hep-th/0101197.

  • Kontsevich, M. (1997). Deformation quantization of Poisson manifolds. Preprint q-alg/9709040.

  • Lehmann, H., Symanzik, K., and Zimmermann, W. (1955). Zur Formulierung quantizierter Feldtheorien. Nuovo Cimento 1, 205.

    Google Scholar 

  • Lehmann, H., Symanzik, K., and Zimmermann, W. (1957). The formulation of quantized field theories, II. Nuovo Cimento 6, 319.

    Google Scholar 

  • Lukierski, J., Stichel, P. C., and Zakrzewski, W. J. (1997). Galileaninvariant (2+1) dimensional models with a Chern–Simons-like term and D = 2 noncommutative geometry. Annalen de Physics 260, 224. Preprint hepth/9612017.

    Google Scholar 

  • Madore, J. (1999). An Introduction to Noncommutative Differential Geometry and Its Physical Applications, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Morariu, B. and Polychronakos, A. P. (2001). Quantum mechanics on the noncommutative torus. Nuclear Physics B 610, [P M], 531-544.

    Google Scholar 

  • Nair, V. P. (2000). Quantum mechanics on a noncommutative brane in Matrix theory. Preprint hep-th/0008027.

  • Nair, V. P. and Polychronakos, A. P. (2000). Quantum mechanics on the noncommutative plane and sphere. Preprint hep-th/0011172.

  • Namsrai, Kh. (1986). Nonlocal Quantum Field Theory and Stochastic Quantum Mechanics, D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Particle Data Group (2002). Review of particle physics, Physical Review D 66(1), 1-958.

    Google Scholar 

  • Polchinski, J. (1998). String Theory, Vols. 1 and 2, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Schomerus, V. (1999). Journal of High Energy Physics, 9906, 030. Preprint hep-th/9903205.

    Google Scholar 

  • Schwartz, L. (1957, 1959). Theorie des Distributions, Vols. I and II, Hermann, Paris.

    Google Scholar 

  • Schwinger, J. (1948). Physical Review 73, 416.

    Google Scholar 

  • Seiberg, N., Susskind, L., and Toumbas, N. (2000). Journal of High Energy Physics 0006, 044. Preprint hep-th/0005015.

    Google Scholar 

  • Seiberg, N. and Witten, E. (1999). Journal of High-Energy Physics 9909, 032. Preprint hep-th/9908142.

    Google Scholar 

  • Snyder, H. (1947). Physical Review 71, 38.

    Google Scholar 

  • Susskind, L. (2001). The quantum Hall fluid and noncommutative Chern–Simons theory. Preprint hep-th/0101029.

  • Szabo, R. J. (in press). Physics Reports. Preprint hep-th/0109162.

  • 't Hooft, G. and Veltman, M. (1972). Regularization and renormalization of Gauge Fields. Nuclear Physics B 44, 189-213.

    Google Scholar 

  • 't Hooft, G. and Veltman, M. (1973). Diagrammar, CERN, Preprint, CERN 73-9, Geneva.

    Google Scholar 

  • Weinberg, J. S. (1995). The Quantum Theory of Fields, Vol. 1: Foundations, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Weinberg, J. S. (1972). Gravitation and Cosmology; Principles and Applications of the General Theory of Relativity, Wiley, New York.

    Google Scholar 

  • Witten, E. (1996). Bound states of strings and p-branes, Nuclear Physics B 460, 335. Preprint, hep-th/9510135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namsrai, K. Noncommutative Field Theory. International Journal of Theoretical Physics 42, 2609–2704 (2003). https://doi.org/10.1023/B:IJTP.0000005979.33083.f1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000005979.33083.f1

Navigation