Skip to main content
Log in

Deep chlorophyll maximum by Ceratium hirundinella (O. F. Müller) Bergh in a shallow oxbow in Hungary

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The stability of the water column permitted stable stratification of the shallow (maximum depth: 3.75 m) oxbow, Kecskészugi-Holt Körös in summer 2000. During the stratified period a deep chlorophyll maximum (DCM) was found at depths getting 60–180 μmol m−2 s−1 photosynthetically active radiation (PAR). The phytoplankton was dominated by Ceratium hirundinella and it is concluded that the development of the DCM largely resulted from the behavioural aggregation of this motile flagellate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bienfang, P., J. Szyper & E. Laws, 1983. Sinking rate and pigment responses to light limitation of a marine diatom: implications to dynamics of chlorophyll maximum layers. Oceanol. Acta 6: 55–62.

    Google Scholar 

  • Bowers, J. A., 1980. Effects of thermocline displacement upon surface chlorophyll maxima in Lake Michigan. J. Great Lakes Res. 6: 367–370.

    Google Scholar 

  • Cullen, J. J., 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll-a. Can. J. Fish. Aquat. Sci. 39: 791–803.

    Google Scholar 

  • Cullen, J. J. & R. W. Eppley, 1981. Chlorophyll maximum layers of the Southern California Bight and possible mechanism of their formation and maintenance. Oceanol. Acta 4: 23–32.

    Google Scholar 

  • Fee, E. J., 1976. The vertical and seasonal distribution of chlorophyll in lakes of the experimental Lakes Area, Northwestern Ontario: implications for primary production estimates. Limnol. Oceanogr. 21: 767–783.

    Google Scholar 

  • Fakuhara, H., A. Kawakami & T. Shimogaito, 2003. Characteristics of nutrient dynamics in Lake Seagate, Japan, a shallow sand dune lake. Hydrobiologia 506–509: 93–99.

    Google Scholar 

  • Gálvez, J. A., F. X. Niell & J. Lucena, 1988. Description and mechanism of formation of a deep chlorophyll maximum due to Ceratium hirundinella (O. F. Müller) Bergh. Arch. Hydrobiol. 112: 143–155.

    Google Scholar 

  • García-Ferrer, I., A. Camacho, X. Armengol, M. R. Miracle & E. Vicente, 2003. Seasonal and spatial heterogeneity in the water chemistry of two sewage-affected saline shallow lakes from central Spain. Hydrobiologia 506–509: 101–110.

    Google Scholar 

  • Gligora, M., A. Plenkovi´c-Moraj & I. Ternjej, 2003. Seasonal distribution and morphological changes of Ceratium hirundinella in two mediterranean shallow lakes. Hydrobiologia 506–509: 213–220.

    Google Scholar 

  • Grigorszky, I., S. Nagy, L. Krienitz, K. T. Kiss, M.M. Hamvas, A. Tóth, G. Borics, C. Máthé, B. Kiss, G. Borbély, G. Dévai & J. Padisák, 2000. Seasonal succession of phytoplankton in a small oligotrophic oxbow and some consideration to the PEG model. Verh. int. Ver. Limnol. 27: 152–156.

    Google Scholar 

  • Heaney, S. I. & R.W. Eppley, 1980. Ligth, temperature and nitrogen as interacting factors affecting diel vertical migration of dino-flagellates in culture. In: Research of the Marine Food Chain, Institute of Marine resources, University of California, Report, 80–1: 165–180.

    Google Scholar 

  • Heaney, S. I. & T. I. Furnass, 1980. Laboratory models of diel vertical migration in dinoflagellates Ceratium hirundinella. Freshwat. Biol. 10: 163–170.

    Google Scholar 

  • Holligan, P.M., 1978., Patchiness in subsurface phytoplankton populations on the Northwest European continental shelf. In: Steele, J. H. (ed.), Spatial Patterns in Plankton Communities. Plenum Press, New York: 222–238.

    Google Scholar 

  • Holopainen, A.-L., R. Niinoja & A. Rämö, 2003. Seasonal succession, vertical distribution and long term variation of phytoplankton communities in two shallow forest lakes in eastern Finland. Hydrobiologia 506–509: 237–245.

    Google Scholar 

  • Kiefer, D. A., R. J. Olson & O. Holm-Hansen, 1976. Another look at the nitrite and chlorophyll maxima in the central North Pacific. Deep Sea Res. 23: 1199–1208.

    Google Scholar 

  • Leland, H. V., 2003. The influence of water depth and flow regime on phytoplankton biomass and community structure in a shallow, lowland river. Hydrobiologia 506–509: 247–255.

    Google Scholar 

  • Longhurst, A. R., 1976. Interactions between zooplankton and phytoplankton profiles in the eastern tropical Pacific Ocean. Deep Sea Res. 23: 729–754. Nagy, M. T., K. Márialigeti, P. Végvári & E. Csépes, in press. Stratification analysis of the Óhalász oxbow of the River Tisza (Kisköre Reservoir, Hungary). Hydrobiologia 506–509: 37–44.

    Google Scholar 

  • Nõges & R. Laugaste, 2003. Water level as mediator between climate change and phytoplankton composition in a large, shallow, temperature lake. Hydrobiologia 506–509: 257–263.

    Google Scholar 

  • Padisák J., 1985. Population dynamics of the dinoflagellate Ceratium hirundinella in the largest shallow lake of Central Europe, Lake Balaton, Hungary. Freshwat. Biol. 15: 43–52. Padisák, J., F. A. R Barbosa, R. Koschel & L. Krienitz, in press a. Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Arch. Hydrobiol., Adv. Limnol. Padisák, J. G. Borics, G. Fehér,I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, in press b. Dominant species and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia.

    Google Scholar 

  • Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia 506– 509: 1–11.

    Google Scholar 

  • Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, in press c. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Arch. Hydrobiol., Adv. Limnol.

  • Pálfy, I., 1995. Tisza-völgyi holtágak [Oxbows of Tissza River]. Közlekedési és Hírközlési Minisztérium, Budapest: 197 pp. [in Hungarian].

  • Perry, J. H., 1950. Chemical Engineers Handbook, Third Edition. McGraw-Hill Book Company, Inc. New York.

    Google Scholar 

  • Sas, H., 1989. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. Akademie Verlag, Richarz GmbH, St. Augustin.

  • Steele, J. H., 1964. A study of production in the Gulf of Mexico. J. Mar. Res. 22: 212–222.

    Google Scholar 

  • Taylor, W. D. & R. G. Wetzel, 1988. Phytoplankton community dynamics in Lawrence Lake of southwestern Michigan. Arch. Hydrobiol., Suppl. 81: 491–632.

    Google Scholar 

  • Veinrick, E. L., S. A. McGowan & A. W. Mantyla, 1973. Deep maxima of photosynthetic chlorophyll in the Pacific Ocean. Fish. Bull. 71: 41–52.

    Google Scholar 

  • Villalobos, J. A., 1985. Incorporación de fósoforo en dos comunidades del embalse eutrófico de La Concepción (istán, Málaga). Tesis de Licenciatura. Universidad de Málaga: 1–219.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorszky, I., Padisák, J., Borics, G. et al. Deep chlorophyll maximum by Ceratium hirundinella (O. F. Müller) Bergh in a shallow oxbow in Hungary. Hydrobiologia 506, 209–212 (2003). https://doi.org/10.1023/B:HYDR.0000008632.57769.19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008632.57769.19

Navigation