Skip to main content
Log in

Genotoxicity of streptozotocin in normal and cancer cells and its modulation by free radical scavengers

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Streptozotocin (STZ) is an antibiotic which can be used to induce diabetes in experimental animals in order to have an insight into pathogenesis of this disease. To use STZ as a diabetogenic substance, its molecular mode of action should be elucidated. Using the alkaline comet assay, we showed that STZ at concentrations in the range 0.01–100 μmol/L induced DNA damage in normal human lymphocytes and HeLa cancer cells in a dose-dependent manner. Lymphocytes were able to remove damage to their DNA within a 30-min repair incubation, whereas HeLa cells completed the repair in 60 min. Vitamins C and E at 10 and 50 μmol/L diminished the extent of DNA damage induced by 50 μmol/L STZ. Pretreatment of the lymphocytes with the nitrone spin trap, α-(4-pyridil-1-oxide)-N-tert-butylnitrone (POBN) or ebselen, which mimics glutathione peroxidase, or pyrrolidine dithiocarbamate (PDTC) reduced the extent of DNA damage evoked by STZ. The cells exposed to STZ and treated with endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), the enzymes recognizing oxidized and alkylated bases, displayed greater extent of DNA damage than those not treated with these enzymes. These results suggest that free radicals may be involved in the formation of DNA lesions induced by streptozotocin. The drug can also alkylate DNA bases. This broad range of DNA damage induced by STZ indicates that the drug may seriously affect genomic stability in normal and pathological cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksoy N, Vural H, Sabuncu T, Aksoy S. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem Funct. 2003;2l:12l–5.

    Google Scholar 

  • Bailly V, Verly WG. Escijerichia co/i endonuclease III is not an endonuclease but a beta-elimination catalyst. Biochem J, 1987;242:565–72.

    CAS  PubMed  Google Scholar 

  • Blasiak J, Kowalik J. A comparison of the in vitro genotoxicity of In-and hexavalent chromium. Mutat Res. 2000:469:135–45.

    CAS  PubMed  Google Scholar 

  • Blasiak J, Sikora A, Czechowska A, Drzewoski J. Free radical scavengers can modulate the DNA-damagingaction of alloxan. Acta Biochim Pol. 2003;50:205–l0.

    CAS  PubMed  Google Scholar 

  • Bolzan AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res. 2002;5l2:12l–34.

    Google Scholar 

  • Capucci MS, Hoffmann ME, Natarajan AT. Streptozotocin-induced genotoxic effects in Chinese hamster cells cells: the resistance phenotype of V79 cells. Mutat Res. 1995;347:79–85.

    Article  CAS  PubMed  Google Scholar 

  • Cay M, Naziroglu M, Simsek H, Aydilek N, Aksakal M, Demirci M. Effects of intraperitoneally administered vita-min C on antioxidative defense mechanism in rats with diabetes induced by streptozotocin. Res Exp Med. 2001;200:205–13.

    CAS  Google Scholar 

  • Collins AR, Duthie SJ, Dobson VL. Direct enzymatic detection of endogenous base damage in human lymphocyte DNA. Carcinogenesis. 1993:14:1733–5.

    CAS  PubMed  Google Scholar 

  • Croze F, Prudhomme GJ. Gene therapy of streptozotocin-induced diabetes by intramuscular delivery of modified preproinsulin genes. J Gene Med. 2003:5:425–37.

    Article  CAS  PubMed  Google Scholar 

  • Dolan ME. Inhibition of DNA repair as a means of increasing the antitumor activity of DNA reactive agents. Adv Drug Del Rev. 1997:26:105–18.

    Google Scholar 

  • Elliot RM, Astley SB, Southon S, Archer DB. Measurement of cellular repair activities for oxidative DNA damage. Free Radic Biol Med. 2000;28:1438–46.

    Google Scholar 

  • Elsnar M, Guldbakke B, Tiedge M, Munday R, Lenzen S, Relative importance of transport and alkylation for pan-creatic beta-cells toxicity of streptozotocin. Diabetologia.2000:43:1528–33.

    Google Scholar 

  • Evans MD, Podmore ID, Daly GJ, Pewrrett D, Lunec J, Herbert KE. Detection of purine lesions in cellular DNA using single cell electrophoresis with Fpg protein. Biochem Soc Trans. 1995;23:434S.

    Google Scholar 

  • Flechner I, Maruta K, Burkart V, Kawai K, Kolb H, Kiesel U, Effects of radical scavengers on the development of experi-mental diabetes. Diabetes Res. 1990;13:67–73.

    CAS  PubMed  Google Scholar 

  • Fruhwald M. DNA methylation patterns in cancer: novel prognostic indicators? Am J Pharmacogenomics. 2003:3: 245–60.

    PubMed  Google Scholar 

  • Gille L, Schott-Ohly F, Friesen N. et al. Generation of hydroxyl radicals mediated by streptozotocin in pancreatic islets of mice in vitro. Pharmacol Toxicol. 2002;90:3 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Harrison L, Hatahet Z, Purmal AA, Wallace SS. Multiply damaged sites in DNA: interactions with Escherichia coli endonucleases III and VIII. Nuci Acids Res. 1998:26:932–41.

    CAS  Google Scholar 

  • Kashiba M, Oka J, Ichikawa R, et al. Impaired ascorbic acid metabolism in streptozotocin-induced diabetic rats. Free Radic Biol Med. 2002;33:l22l–30.

    Article  Google Scholar 

  • King GL, Browniee M. The molecular and molecular mechanisms of diabetic complications. Endocrinol Metab Clin N Am. 1996:25:255–70.

    Article  CAS  Google Scholar 

  • Klaude M, Eriksson S, Nygren J, Ahnstrom G. The comet assay: mechanisms and technical considerations. Mutat Res. 1996;363:89–96.

    CAS  PubMed  Google Scholar 

  • Koo JR, Vaziri ND. Effects of diabetes, insulin and antiox-idants on NO synthase abundance and NO interaction with reactive oxygen species. Kidney mt. 2003;63: 195–201.

    CAS  Google Scholar 

  • Krokan HE, Standal R, Slupphaug G. DNA glycosylases in the base excision repair. Biochem J, 1997;325:1–16.

    CAS  PubMed  Google Scholar 

  • Kotamraju S, Konorev EA, Joseph J, Kayalanaraman B, Doxorubicin-induced apoptosis ii endothelial cells and cardiomyocytes is ameriorated by nitrone spin traps and ebselen. J Biol Chem. 2000;275:33585–92.

    Article  CAS  PubMed  Google Scholar 

  • Masters JR. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer. 2002:2:315–9.

    Article  CAS  PubMed  Google Scholar 

  • Paller MS, Hoidal JR, Ferris TF. Free radicals in isehemic acute renal failure in the rat. J Clin Invest. 1984:74:1156–64.

    CAS  PubMed  Google Scholar 

  • Rudolfi R, Amaducci L, Derni S, Fabbri L, Innocenti MP, Vignutelli P. Chemotherapy with 5-fluorouracil and strepto-zotocin in carcinoid tumors of gastrointestinal origin: experiences with 13 patients. J Chemother. 1990;3:328–31.

    Google Scholar 

  • Sandier S, Andersson A. The partial protective effect of the hydroxyl radical scavenger dimethyl urea on streptozotocin-induced diabetes in the mouse in vivo and in vitro. Diabetologia. 1982:23:374–8.

    Google Scholar 

  • Schnedi WJ, Ferber S, Johnson JH, Newgard CB. STZ trans-port and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes. 1994;43:l326–33.

    Google Scholar 

  • Singh NP, McCoy T, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–92.

    Article  CAS  PubMed  Google Scholar 

  • Tiano L, Fedeli D, Santroni AM, Villarini M, Engman L, Falcioni G. Effect of three diaryl tellurides, and an organo-selenium compound in trout erythrocytes exposed to oxida-tive stress in s'itro. Mutat Res. 2000;464:269–77.

    CAS  PubMed  Google Scholar 

  • Tice RR, Agurell E, Anderson D, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000:25:206–21.

    Google Scholar 

  • Tokuda K, Bodell WJ. Cytotoxicity and induction of sister chromatid exchanges in human and rodent brain tumor cells treated with alkylating chemotherapeutic agents. Cancer Res. 1988;48:3100–5.

    CAS  PubMed  Google Scholar 

  • Uchigata Y, Yamamoto H, Kawamura A, Okamato H. Protec-tion by superoxide dismutase, catalase, and poly(ADP-ribose) synthetase inhibitors against alloxan-streptozoto-cm-induced islet DNA strand breaks and against the inhibi-tion of proinsulin synthesis. J Biol Chem. 1982;257:6084–8.

    CAS  PubMed  Google Scholar 

  • Viana M, Castro M, Barbas C, Herrera E, Bonet B. Effect of different doses of vitamin E on the incidence of malforma-tions in pregnant diabetic rats. Ann Nutr Metab. 2003;47:6– 10.

    Article  CAS  PubMed  Google Scholar 

  • West E, Simon OR, Morrison EY. Streptozotocin alters pan-creatic beta-cell responsiveness to glucose within six hours of injection into rats. West Indian Med J, 1996;45:60–2.

    CAS  PubMed  Google Scholar 

  • Wolff SP. Diabetes mellitus and free radicals. Br Med Bull. 1993;49:642–52.

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Uchigata Y, Okamato H, Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature. 1981; 294: 184–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Błasiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Błasiak, J., Sikora, A., Wozniak, K. et al. Genotoxicity of streptozotocin in normal and cancer cells and its modulation by free radical scavengers. Cell Biol Toxicol 20, 83–96 (2004). https://doi.org/10.1023/B:CBTO.0000027919.38379.28

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CBTO.0000027919.38379.28

Navigation