Skip to main content
Log in

The Catalysis of Vapor-Phase Beckmann Rearrangement for the Production of ε-Caprolactam

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Recently, Sumitomo Chemical Co., Ltd. developed the vapor-phase Beckmann rearrangement process for the production of ε-caprolactam. In the process, cyclohexanone oxime is rearranged into ε-caprolactam using a zeolite as a catalyst instead of sulfuric acid. EniChem in Italy developed the ammoximation process that involves the direct production of cyclohexanone oxime without producing any ammonium sulfate. Sumitomo Chemical Co., Ltd. has commercialized the combined process of vapor-phase Beckmann rearrangement and ammoximation in 2003.

In this paper, the authors focus on some aspects of the vapor-phase Beckmann rearrangement catalysis. A solid catalyst that is mainly composed of a high-silica MFI zeolite (Silicalite-1) has been developed for the vapor-phase Beckmann rearrangement. This catalyst does not possess acidity that can be detected by ammonia TPD. Methanol fed into the reactor with cyclohexanone oxime improves the yield of caprolactam. Methanol reacts with terminal silanols on the zeolite surface and converts them to methoxyl groups. The modification of the catalyst by methanol has an important role for the Beckmann rearrangement reaction.

Nest silanols located just inside the pore mouth of the MFI zeolite are supposed to be the active sites of the catalyst. We propose that the coordination between the NOH group of cyclohexanone oxime molecule and the nest silanols through hydrogen bonding is responsible for the reaction. The reaction mechanism of Beckmann rearrangement under vapor-phase conditions is the same as in the liquid phase, namely, the alkyl group in anti-position against the hydroxyl group of the oxime migrates to the nitrogen atom's position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Ichihashi and M. Kitamura, Catal. Today 73 (2002) 23.

    Google Scholar 

  2. H. Sato, K. Hirose, N. Ishii and Y. Umada, U.S. Patent 4,709,024 (1987) to Sumitomo Chemical Co., Ltd.

  3. H. Sato, K. Hirose, M. Kitamura, Y. Umada, N. Ishii and H. Tojima, U.S. Patent 4,717,769 (1988) to Sumitomo Chemical Co., Ltd.

  4. V. Alessi, R. Penzo, S. Pattaro, R. Tessari and M. J. Slater, Value Adding Solvent Extr., Pap ISEC '96, 2 (1996) 1673.

    Google Scholar 

  5. J. Ritz, H. Fuchs, H. Kieczka and W. C. Moran, Ullman's Encyclopedia of Industrial Chemistry A5 (1986) 31.

    Google Scholar 

  6. P. Roffia, G. Leofanti, A. Cesana, M. Mantegazza, M. Padovan, G. Petrini, S. Tonti and P. Gervasutti, Stud. Surf. Sci. Catal. 55 (1990) 43.

    Google Scholar 

  7. A. Zecchina, G. Spoto, S. Bordiga, F. Geobaldo, G. Petrini, G. Leofanti, M. Padovan, M. Mantegazza and P. Roffia, Stud. Surf. Sci. Catal. 75 (1993) 719.

    Google Scholar 

  8. A. Zecchina, S. Bordiga, C. Lamberti, G. Ricchiardi, C. Lamberti, G. Ricchiardi, D. Scarano, G. Petrini, G. Leofanti and M. Mantegazza, Catal. Today 32 (1996) 97.

    Article  Google Scholar 

  9. M. Kitamura, M. Shimazu and M. Yako, JP 2000–229939 (1999) to Sumitomo Chemical Co., Ltd.

  10. H. Sato, N. Ishii, K. Hirose and S. Nakamura, Proceedings of the 7th IZC, (1986) p. 755.

  11. D. H. Olson, W. O. Haag and R. M. Lago, J. Catal. 61 (1980) 390.

    Article  Google Scholar 

  12. H. Sato, K. Hirose, M. Kitamura and Y. Nakamura, Shokubai 31 (1989) 136.

    Google Scholar 

  13. M. Kitamura and H. Ichihashi, Stud. Surf. Sci. Catal. 90 (1994) 67.

    Google Scholar 

  14. G. P. Heitmann, G. Dahlhoff, and W. F. Holderich, J. Catal. 186 (1999) 12.

    Google Scholar 

  15. L. H. Little, Infrared Spectra of Adsorbed Species (Academic Press, London, 1966) p. 174.

    Google Scholar 

  16. H. Ichihashi, M. Kitamura, H. Kajikuri and E. Tasaka, U.S. Patent 5,354,859 (1994) to Sumitomo Chemical Co., Ltd.

  17. Accelrys Inc., Materials Studio 2.1 molecular modeling system and D Mol3 quantum mechanical program, San Diego: Accelrys Inc., 1999. Figures 10–11, 13, and 17 are obtained with Materials Studio. All geometry optimization and energy calculations with D Mol3 are performed with GGA-PW91 exchange correlation functionals and Double Numerical plus Polarization (DNP) basis set.

  18. D. H. Olson, G. T. Kokotailo, S. L. Lawton and W. M. Meier, J. Phys. Chem. 85 (1981) 2238.

    Google Scholar 

  19. T. Yashima, K. Miura and T. Komatsu, Stud. Surf. Sci. Catal. 84 (1994) 1897.

    Google Scholar 

  20. H. Kath, R. Glaser, and J. Weitkamp, Chem. Eng. Technol. 24 (2001) 150.

    Google Scholar 

  21. H. Kajikuri, M. Kitamura and H. Ichihashi, in Proceedings of the Kyushu International Symposium on Physical Organic Chemistry KISPOC, Fukuoka, Japan, 1997, p. 507.

    Google Scholar 

  22. H. Ichihashi, Science andTechnology in Catalysis 2002 (Kodansha, Elsevier, 2003) p. 73.

    Google Scholar 

  23. A. A. Sokol, C. R. A. Catlow, J. M. Garces and A. Kuperman, J. Phys. Chem. B 106 (2002) 6163.

    Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J.A. Pople, Gaussian 98 (Revision A.9) (Gaussian Inc., Pittsburgh PA, 1998).

    Google Scholar 

  25. Y. Ikushi ma, K. Hatakeda, O. Sato, T. Yokoyama, and M. Arai, J. Am. Chem. Soc. 122 (2000) 1908.

    Google Scholar 

  26. A. H. Blatt, Chem. Rev. (1933) 215.

  27. H. Kajikuri, M. Kitamura and H. Ichihashi, The 4th Japan-Korea Symposium on Catalysis (Tokyo, Japan, 1993) p. 12.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Kitamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichihashi, H., Ishida, M., Shiga, A. et al. The Catalysis of Vapor-Phase Beckmann Rearrangement for the Production of ε-Caprolactam. Catalysis Surveys from Asia 7, 261–270 (2003). https://doi.org/10.1023/B:CATS.0000008165.80991.05

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATS.0000008165.80991.05

Navigation