Skip to main content
Log in

Quasi-Wavelet Model of Von Kármán Spectrum of Turbulent Velocity Fluctuations

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The von Kármán spectra of turbulent temperature andvelocity fluctuations have been widely used in the literature on turbulenceand electromagnetic, seismic, and acoustic wave propagation in random media.In this paper we provide a phenomenological motivation for the vonKármán velocity spectrum in terms of the quasi-wavelet model ofturbulence developed recently. In this model, turbulence is represented as asuperposition of self-similar localized eddies of many different scales. Wefind a functional form for these eddies that yields the von Kármán velocity spectrum exactly. We also show that other eddy functions producevelocity spectra that have the same general form as the von Kármán spectrum, and we consider possible quasi-wavelet representations of the`Kansas' spectrum and the `-1' spectrum. We also present asystematic determination, based on turbulence similarity theories, of theparameters of the von Kármán spectra of temperature and velocityfluctuations in an unstable atmospheric boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arfken G. and Weber, H.: 1999, Mathematical Methods for Physicists, 4th edn., Academic, San Diego, Chapters 10, 11.

    Google Scholar 

  • Astruc, D., PlantÉ, L., Murenzi, R., Lebret, Y., and Vandrome, D.: 1993, 'On the Use of 3D Wavelet Transform for the Analysis of Computational Fluid Dynamics Results', in Y. Meyer and S. Rogues (eds.), Progress in Wavelet Analysis and Application, Editions FrontiÈres, France, pp. 463–470.

    Google Scholar 

  • Batchelor, G. K.: 1953, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, U.K., 197 pp.

    Google Scholar 

  • Blanc-Benon, Ph.: 1981, Effet d'Une Turbulence CinÉmatique sur la Propagation des Ondes Acoustiques, Ph.D. Dissertation, ECL 81–02, École Centrale de Lyon, France.

    Google Scholar 

  • Blanc-Benon, Ph.: 1987, 'Propagation Acoustique en Milieu Turbulen: Calcul par TransformÉe de Fourier Rapide du Moment d'Ordre Deux', Acustica 64, 53–57.

    Google Scholar 

  • Blanc-Benon, Ph., JuvÉ, D., Ostashev, V. E., and Wandelt, R.: 1995, 'On the Appearance of Caustics for Plane Sound-Wave Propagation in Moving Random Media', Waves Random Media 5, 183–189.

    Google Scholar 

  • Caughey, S. J. and Palmer, S. G.: 1979, 'Some Aspects of Turbulence Structure through the Depth of the Convective Boundary Layer', Quart. J. Roy. Meteorol. Soc. 105, 811–827.

    Google Scholar 

  • Chevret, P., Blanc-Benon, Ph., and JuvÉ, D.: 1996, 'A Numerical Model for Sound Propagation through a Turbulent Atmosphere near the Ground', J. Acoust. Soc. Amer. 100, 3587–3599.

    Google Scholar 

  • Comte-Bellot, G. and Corrsin, S.: 1971 'Simple Eulerian Time Correlation of Full-and Narrow-Band Velocity Signals in Grid-Generated, “Isotropic” Turbulence', J. Fluid Mech. 48, 273–337.

    Google Scholar 

  • deWolfe, D.: 1983, 'A Random Motion Model of Fluctuations in a Nearly-Transparent Medium', Radio Sci. 18, 138–142.

    Google Scholar 

  • Farge, M.: 1992, 'Wavelet Transforms and their Applications to Turbulence', Annu. Rev. Fluid Mech. 24, 395–457.

    Google Scholar 

  • Frehlich, R.: 2000, 'Simulation of Coherent Doppler Lidar Performance for Space-Based Platforms', J. Appl. Meteorol. 39, 245–262.

    Google Scholar 

  • Frehlich, R., Cornman, L., and Sharman, R.: 2001, 'Simulation of Three-Dimensional Turbulent Velocity Fields', J. Appl. Meteorol. 40, 246–258.

    Google Scholar 

  • Gilbert, K., Raspet, R., and Di, X.: 1990, 'Calculation of Turbulence Effects in an Upward Refracting Atmosphere', J. Acoust. Soc. Amer. 87, 2428–2437.

    Google Scholar 

  • Goedecke, G. and Auvermann, H.: 1997, 'Acoustic Scattering by Atmospheric Turbules', J. Acoust. Soc. Amer. 102, 759–771.

    Google Scholar 

  • Goedecke, G., Wood, R., Auvermann, H., Ostashev, V., Havelock, D., and Ting, C.: 2001a, 'Spectral Broadening of Sound Scattered by Advecting Atmospheric Turbulence', J. Acoust. Soc. Amer. 109, 1923–1933.

    Google Scholar 

  • Goedecke, G., Moore, S., Auvermann, H., and Ostashev, V.: 2001b, 'Quasi-Wavelet Model of Anisotropic Inhomogeneous Atmospheric Turbulence', in Proceedings, Battlespace Atmospheric and Cloud Impacts on Military Operations Conference, Ft. Collins, CO, July 10–12.

  • Goedecke, G., Wilson, D., Ostashev, V., and Auvermann, H.: 2002, 'Quasi-Wavelet Models for Atmospheric Turbulence', in Proceedings, 15th Symposium on Boundary Layers and Turbulence, American Meteorological Society, Wageningen, The Netherlands.

    Google Scholar 

  • Gradshteyn, I. and Ryzhik, I.: 1980, Table of Integrals, Series, and Products (Corrected and enlarged edition prepared by Alan Jeffrey, Academic, New York 1980), 1160 pp. (Equation 3.771.5).

    Google Scholar 

  • Hinze, J.: 1975, Turbulence, 2nd edn., Mc-Graw-Hill, New York, 790 pp. (Chapter 3).

    Google Scholar 

  • HÖgstrÖm, U.: 1996, 'Review of Some Basic Characteristics of the Atmospheric Surface Layers', Boundary-Layer Meteorol. 7, 215–246.

    Google Scholar 

  • HÖgstrÖm, U., Hunt, J., and Smedman, A.: 2002, 'Theory and Measurements for Turbulence Spectra and Variances in the Atmospheric Neutral Surface Layer', Boundary-Layer Meteorol. 103, 101–124.

    Google Scholar 

  • Hudgins, L., Fraehe, C., and Farge, M.: 1993, 'Wavelet Transforms and Atmospheric Turbulence', Phys. Rev. Lett. 71, 3279–3282.

    Google Scholar 

  • Husebye, E. and Dainty, A.: 1996, 'Monitoring a Comprehensive Test Ban Treaty', in Proceedings of the NATO Advanced Study Institute on Monitoring a Comprehensive Text Ban Treaty, Kluwer Academic Publishers, The Netherlands, pp. 664–688.

    Google Scholar 

  • Kaimal, J., Wyngaard, J., Izumi, Y., and CotÉ, O.: 1972, 'Spectral Characteristics of Surface Layer Turbulence', Quart. J. Roy. Meteorol. Soc. 98, 563–589.

    Google Scholar 

  • Karweit, M., Blanc-Benon, Ph., Juve, D. and Comte-Bellot, G.: 1991, 'Simulation of the Propagation of an Acoustic Wave through a Turbulent Velocity Field: A Study of Phase Variance', J. Acoust. Soc. Amer. 89, 52–62.

    Google Scholar 

  • Katul, G. and Chu, C.: 1998, 'A Theoretical and Experimental Investigation of Energy-Containing Scales in the Dynamic Sublayer of Boundary Layer Flows', Boundary-Layer Meteorol. 86, 279–312.

    Google Scholar 

  • Katul, G. et al.: 1995, 'Low Wave-Number Spectral Characteristics of Velocity and Temperature in the Atmospheric Surface Layer', J. Geophys. Res. Atmos. 100(D7), 1424–14255.

    Google Scholar 

  • Kolmogorov, A.: 1941, 'The Local Structure of Turbulence in Incompressible Fluid for Very Large Reynolds Numbers', Dokl. Akad. Nauk. SSSR 3, 299–303 English Trans: Proc. Roy. Soc. London, Ser. A 434, 9–13, 1991.

    Google Scholar 

  • Kristensen, L., Lenschow, D., Kirkegaard, P., and Courtney, M.: 1989, 'The Spectral Velocity Tensor for Homogeneous Boundary-Layer Turbulence', Boundary-Layer Meteorol. 47, 149–193.

    Google Scholar 

  • Lauren, M. et al.: 1999, 'Characterisation and Simulation of the Multiscaling Properties of the Energy-Containing Scales of Horizontal Surface Layer Winds', Boundary Layer Meteorol. 90, 21–46.

    Google Scholar 

  • Mann, J.: 1994, 'The Spatial Structure of Neutral Atmospheric Surface Layer Turbulence', J. Fluid Mech. 273, 141–168.

    Google Scholar 

  • Mann, J.: 1998, 'Wind Field Simulation', Probabilistic Eng. Mech. 13, 269–282.

    Google Scholar 

  • McBride, W., Bass, H., Raspet, R., and Gilbert, K.: 1992, 'Scattering of Sound by Atmospheric Turbulence: Predictions in a Refractive Shadow Zone', J. Acoust. Soc. Amer. 91, 1336–1340.

    Google Scholar 

  • Meneveau, C.: 1994, 'Analysis of Turbulence in the Orthonormal Wavelet Representation', J. Fluid Mech. 232, 4469–520.

    Google Scholar 

  • Nelkin, M.: 1992, 'In What Sense Is Turbulence an Unsolved Problem', Science 255, 566–570.

    Google Scholar 

  • Nikora, V.: 1999, 'Origin of the “-1” Spectral Law in Wall-Bounded Turbulence', Phys. Rev. Lett. 83, 734–736.

    Google Scholar 

  • Ostashev, V.: 1997, Acoustics in Moving Inhomogeneous Media (E & FN SPON (An imprint of Thompson Professional), London.), 259 pp. (Chapters 6, 7).

    Google Scholar 

  • Ostashev, V. and Wilson, D.: 2000, 'Relative Contributions from Temperature and Wind Velocity Fluctuations to the Statistical Moments of a Sound Field in a Turbulent Atmosphere', Acusticaacta acustica 86, 260–268.

    Google Scholar 

  • Ostashev, V. and Wilson, D.: 2001, 'Statistical Moments of the Sound Field Propagating in a Random, Refractive Medium near an Impedance Boundary', J. Acoust. Soc. Amer. 109, 1909–1922.

    Google Scholar 

  • Ostashev, V., Blanc-Benon, Ph., and JuvÉ, D.: 1998, 'Coherence Function of a Spherical Acoustic Wave after Passing through a Turbulent Jet', Comptes Rendus de l'AcadÉmie des Sciences 326, serie II B, 39–45.

    Google Scholar 

  • Ostashev, V., BrÄhler, B., Mellert, V., and Goedecke, G.: 1998, 'Coherence Functions of Plane and Spherical Waves in a Turbulent Medium with the von KÁrmÁn Spectrum of Medium Inhomogeneities', J. Acoust. Soc. Amer. 104, 727–737.

    Google Scholar 

  • Ostashev, V., Salomons, E., Clifford, S., Lataitis, R., Wilson, D., Blanc-Benon, Ph., and JuvÉ, D.: 2001, 'Sound Propagation in a Turbulent Atmosphere near the Ground: A Parabolic Equation Approach', J. Acoust. Soc. Amer. 109, 1894–1908.

    Google Scholar 

  • Peltier, L., Wyngaard, J., Khanna, S., and Brasseur, J.: 1996, 'Spectra in the Unstable Surface Layer', J. Atmos. Sci. 53, 49–61.

    Google Scholar 

  • Rytov, S., Kravtzov, Y., and Tatarskii, V.: 1989, Principles of Statistical Radio Physics. Pt. 4. Wave Propagation through Random Media, Springer, Berlin.

    Google Scholar 

  • Shinozuka, M. and Deodatis G.: 1996, 'Simulation of Multi-Dimensional Stochastic Fields by Spectral Representation', Appl. Mech. Rev. 49, 29–53.

    Google Scholar 

  • Tennekes, H. and Lumley, J.: 1972, A First Course in Turbulence, MIT Press, Cambridge, 300 pp. (Chapters 2, 3, 8).

    Google Scholar 

  • Tofsted, D.: 2000, Turbulence Simulation: Outer Scale Effects on the Refractive Index Spectrum, U.S. Army Research Laboratory Report No. ARL-TR-548, November 2000.

  • von KÁrmÁn, T.: 1948, 'Progress in the Statistical Theory of Turbulence', Proc. Natl. Acad. Sci. 34, 530–539.

    Google Scholar 

  • Wasier, J.: 1999, Étude ExpÉrimentale des Effects d'une FrontiÈre sur la Propagation des Ondes Acoustiques À Travers une Turbulence Thermique,Ph.D. Dissertation, ECL 99–46, École Centrale de Lyon, France.

    Google Scholar 

  • Wilson, D.: 1996, 'A Three-Dimensional Correlation/Spectral Model for Turbulent Velocities in a Convective Boundary Layer', Boundary-Layer Meteorol. 85, 35–52.

    Google Scholar 

  • Wilson, D.: 1998, 'Performance Bounds for Acoustic Direction-of-Arrival Arrays Operating in Atmospheric Turbulence', J. Acoust. Soc. Amer. 103, 1306–1319.

    Google Scholar 

  • Wilson, D. K.: 1999, 'Calculated Coherence and Extinction of Sound Waves Propagating through Anisotropic, Shear-Induced Turbulent Velocity Fluctuations', J. Acoust. Soc. Amer. 105, 658–671.

    Google Scholar 

  • Wilson, D. K.: 2000, 'A Turbulence Spectral Model for Sound Propagation in the Atmosphere that Incorporates Shear and Buoyancy Forcings', J. Acoust. Soc. Amer. 108, 2021–2038.

    Google Scholar 

  • Wilson, D. and Ostashev, V.: 2000, 'A Re-Examination of Acoustic Scattering in the Atmosphere Using Improved Models for the Turbulence Spectrum', in Proceedings, Battlespace Atmospheric and Cloud Impacts on Military Operations Conference, Fort Collins, CO, July 2000.

  • Wilson, D. K., Brasseur, J. G., and Gilbert, K. E.: 1999, 'Acoustic Scattering and the Spectrum of Atmospheric Turbulence', J. Acoust. Soc. Amer. 105, 30–34.

    Google Scholar 

  • Wyngaard, J., Izumi, Y., and Collins, S.: 1971, 'Behavior of the Refractive-Index-Structure Parameter near the Ground', J. Opt. Soc. Am. 61, 1646–1650.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goedecke, G.H., Ostashev, V.E., Wilson, D.K. et al. Quasi-Wavelet Model of Von Kármán Spectrum of Turbulent Velocity Fluctuations. Boundary-Layer Meteorology 112, 33–56 (2004). https://doi.org/10.1023/B:BOUN.0000020158.10053.ab

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000020158.10053.ab

Navigation