Skip to main content
Log in

The First Turbulence and First Fossil Turbulence

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A model is proposed connecting turbulence, fossil turbulence and the big-bang origin of the universe. While details are incomplete, the model is consistent with our knowledge of these processes and is supported by observations. Turbulence arises in a hot big-bang quantum gravitational dynamics scenario at Planck scales. Chaotic, eddy-like motions produce an exothermic Planck particle cascade from 10−35 m at 1032 K to 108 larger, 104 cooler, quark-gluon scales. A Planck-Kerr instability gives high Reynolds number (Re ∼ 106) turbulent combustion, space-time-energy-entropy and turbulent mixing. Batchelor-Obukhov-Corrsin turbulent-temperature fluctuations are preserved as the first fossil turbulence by inflation stretching the patterns beyond the horizon ct of causal connection faster than light speed c in time t∼ 10−33 sec. Fossil big-bang temperature turbulence reenters the horizon and imprints nucleosynthesis of H-He densities that seed fragmentation by gravity at 1012 s in the low Reynolds number plasma before its transition to gas at t∼ 1013 s and T∼ 3000 K. Multiscaling coefficients of the cosmic microwave background (CMB) temperature anisotropies closely match those for high Reynolds number turbulence, Bershadskii, A. and Sreenivasan, K.R., Phys. Lett. A 299 (2002) 149-152; Bershadskii, A. and Sreenivasan, K.R., Phys. Lett. A 319 (2003) 21-23. CMB spectra support the interpretation that big-bang turbulence fossils triggered fragmentation of the viscous plasma at supercluster to galaxy mass scales from 1046 to 1042 kg, Gibson, C.H., Appl. Mech. Rev. 49 (5) (1996) 299-315; Gibson, C.H., J. Fluids Eng. 122 (2000) 830-835; Gibson, C.H., Combust. Sci. Technol. (2004, to be published).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrow, J.D, Ferreira, P.G. and Silk, J., Constraints on a primordial magnetic field. Phys. Rev. Lett. 78 (1997) 3610.

    Google Scholar 

  2. Benzi, R., Biferale, L., Ciliberto, S., Struglia, M.V. and Tripiccione, R., Generalized scaling in fully developed turbulence. Physica D 96 (1996) 162-181.

    Google Scholar 

  3. Bershadskii, A. and Sreenivasan, K.R., Multiscaling of cosmic microwave background radiation. Phys. Lett. A 299 (2002) 149-152.

    Google Scholar 

  4. Bershadskii, A. and Sreenivasan, K.R., Extended self-similarity of the small-scale cosmic mi-crowave background anisotropy. Phys. Lett. A 319 (2003) 21-23.

    Google Scholar 

  5. Brandenburg, A., Enqvist, K. and Olesen, P., Large-scale magnetic fields from hydromagnetic turbulence in the very early universe. Phys. Rev. D 54 (1996) 1291-1300.

    Google Scholar 

  6. Dolgov, A.D., Grasso, D. and Nicolis, A., Relic backgrounds of gravitational waves from cosmic turbulence. Phys. Rev. D 66 (2002) 103505.

    Google Scholar 

  7. Gibson, C.H., Fine structure of scalar fields mixed by turbulence I. Zero-gradient points and minimal gradient surfaces. Phys. Fluids 11 (1968) 2305-2315.

    Google Scholar 

  8. Gibson, C.H., Fine structure of scalar fields mixed by turbulence II. Spectral theory. Phys. Fluids 11 (1968) 2316-2327.

    Google Scholar 

  9. Gibson, C.H., Internal waves, fossil turbulence, and composite ocean microstructure spectra. J. Fluid Mech. 168 (1986) 89-117.

    Google Scholar 

  10. Gibson, C.H., Kolmogorov similarity hypotheses for scalar fields: Sampling intermittent turbu-lent mixing in the ocean and Galaxy, In: Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On, Proceedings of the Royal Society London, Ser. A, V434 N1890 (1991) pp. 149-164.

  11. Gibson, C.H., Turbulence in the ocean, atmosphere, galaxy, and universe, Appl. Mech. Rev. 49(5) (1996) 299-315.

    Google Scholar 

  12. Gibson, C.H., Fossil turbulence revisited. J. Mar. Syst. 21(1-4) (1999) 147-167.

    Google Scholar 

  13. Gibson, C.H., Turbulent mixing, diffusion and gravity in the formation of cosmolog-ical structures: The fluid mechanics of dark matter. J. Fluids Eng. 122 (2000) 830-835.

    Google Scholar 

  14. Gibson, C.H., The first turbulent combustion, Combust. Sci. Technol. (2004, to be published).

  15. Greene, B., The Elegant Universe, Norton, NY (1999).

  16. Guth, A., The Inflationary Universe, Addison Wesley, NY (1997).

    Google Scholar 

  17. Hu, W., Ringing in the new cosmology. Nature 404 (2000) 939.

    Google Scholar 

  18. Jeans, J.H., The stability of a spherical nebula. Phil. Trans. R. Soc. Lond. A 199 (1902) 1.

    Google Scholar 

  19. Kolb, E.W. and Turner, M.S., The Early Universe, Addison Wesley, NY (1990).

    Google Scholar 

  20. Leung, P.T. and Gibson, C.H., Turbulence and fossil turbulence in oceans and lakes. Chin. J. Oceanol. Limnol. 22(1) (2004) 1-23.

    Google Scholar 

  21. Padmanabhan, T., Structure Formation in the Universe, Cambridge University Press, Cambridge, UK (1993).

    Google Scholar 

  22. Peacock, J.A., Cosmological Physics, Cambridge University Press (2000).

  23. Pearson, T.J., Mason, B.S., Readhead, A.C.S., et al., The Anisotropy of the microwave back-ground to l =3500: Mosaic observations with the cosmic background imager. Astrophys. J. 591 (2003) 556-574.

    Google Scholar 

  24. Peebles, P.J.E., Principles of Physical Cosmology, Princeton University Press, Princeton, NJ (1993).

    Google Scholar 

  25. Rees, M., New Perspectives in Astrophysical Cosmology, Cambridge University Press, UK (2000).

    Google Scholar 

  26. Sievers, J.L., Bond, J.R., Cartwright, J.K. and 14 others, Cosmological parameters from cosmic background imager observations and comparisons with BOOMERANG, DASI and MAXIMA, ApJ 591 (2003) 599-622 submitted (astro-ph/0205387) (2002).

    Google Scholar 

  27. Silk, J., The Big Bang,W.H. Freeman and Company, NY (1989).

    Google Scholar 

  28. Subramanian, K. and Barrow, J.D., Small-scale microwave background anisotropies aris-ing from tangled primordial magnetic fields. Mon. Not. R. Astron. Soc. 335 (2002) L57-L61.

    Google Scholar 

  29. Tully, R.B., More about clustering on a scale of 0.1 c. ApJ. 323 (1987) 1-18.

    Google Scholar 

  30. Xu, Y., Tegmark, M., Oliveira-Costa, A., Devlin, M.J., Herbig, T., Miller, A.D., Netterfield, C.B. and Page, L., Comparing and combining the Saskatoon, QMAP and COBE CMB.THE FIRST TURBULENCE AND FIRST FOSSIL TURBULENCE 179 maps. ApJ preprint submitted (astro-ph/0010552, www.hep.upenn.edu/ ∼xuyz/qmask.html) (2001).

  31. Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & Sons, New York (1972).

    Google Scholar 

  32. Weinberg, S., The First Three Minutes, Basic Books, Inc., Publishers, New York (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, C.H. The First Turbulence and First Fossil Turbulence. Flow, Turbulence and Combustion 72, 161–179 (2004). https://doi.org/10.1023/B:APPL.0000044410.33916.3c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPL.0000044410.33916.3c

Navigation