Skip to main content
Log in

Biological properties and gene expression associated with metastatic potential of human osteosarcoma

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Lung metastasis has a great influence on the prognosis of patients with osteosarcoma. We previously established two high-metastatic sublines, M112 and M132, from the HuO9 human osteosarcoma cell line by in vivo selection. In this study, we newly isolated a high-metastatic subline, H3, and three low-metastatic sublines, L6, L12 and L13, from HuO9 by the dilution plating method. Three high-metastatic sublines produced more than 200 metastatic nodules in the lung, while three low-metastatic sublines produced no or few nodules after injection of 2 × 106 cells into the tail vein of nude mice. There were significant differences in the motility and invasiveness between high- and low-metastatic sublines, whereas the growth rates in vitro and the tumorigenicity in vivo showed no correlation with their metastatic abilities. Early adherence to culture plates was significantly lower in two of three low-metastatic sublines, which occupied smaller surface areas on the culture plates than other sublines did. Comparison of the expression of 637 cancer-related genes by cDNA microarray revealed that seven genes were differentially expressed between high- and low-metastatic sublines. Among them, five genes (AXL, TGFA, COLL7A1, WNT5A, and MKK6) were associated with adherence, motility, and/or invasiveness. These results suggest that the differences in motility/invasiveness and adhesive abilities are key determinants of lung metastasis in osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsuchiya H, Kanazawa Y, Abdel-Wanis ME et al. Effect of timing of pulmonary metastases identification on prognosis of patients with osteosarcoma: The Japanese Musculoskeletal Oncology Group study. J Clin Oncol 2002; 20(16): 3470–7.

    Article  PubMed  Google Scholar 

  2. Yokota J. Tumor progression and metastasis. Carcinogenesis 2000; 21(3): 497–503.

    Article  PubMed  CAS  Google Scholar 

  3. Ishiguro T, Nakajima M, Naito M et al. Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Res 1996; 56(4): 875–9.

    PubMed  CAS  Google Scholar 

  4. Clark EA, Golub TR, Lander ES et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000; 406(6795): 532–5.

    Article  PubMed  CAS  Google Scholar 

  5. Hashimoto Y, Shindo-Okada N, Tani M et al. Identification of genes differentially expressed in association with metastatic potential of K-1735 murine melanoma by messenger RNA differential display. Cancer Res 1996; 56(22): 5266–71.

    PubMed  CAS  Google Scholar 

  6. Bittner M, Meltzer P, Chen Y et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000; 406(6795): 536–40.

    Article  PubMed  CAS  Google Scholar 

  7. Kimura K, Nakano T, Park YB et al. Establishment of human osteosarcoma cell lines with high metastatic potential to lungs and their utilities for therapeutic studies on metastatic osteosarcoma. Clin Exp Metastasis 2002; 19(6): 477–85.

    Article  PubMed  CAS  Google Scholar 

  8. Mori S, Ueda T, Kuratsu S et al. Suppression of pulmonary metastasis by angiogenesis inhibitor TNP-470 in murine osteosarcoma. Int J Cancer 1995; 61(1): 148–52.

    PubMed  CAS  Google Scholar 

  9. Honoki K, Tsutsumi M, Miyauchi Y et al. Increased expression of nucleoside diphosphate kinase/nm23 and c-Ha-ras mRNA is associated with spontaneous lung metastasis in rat-transplantable osteosarcomas. Cancer Res 1993; 53(20): 5038–42.

    PubMed  CAS  Google Scholar 

  10. Barroga EF, Kadosawa T, Okumura M et al. Establishment and characterization of the growth and pulmonary metastasis of a highly lung metastasizing cell line from canine osteosarcoma in nude mice. J Vet Med Sci 1999; 61(4): 361–7.

    Article  PubMed  CAS  Google Scholar 

  11. Khanna C, Khan J, Nguyen P et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 2001; 61(9): 3750–9.

    PubMed  CAS  Google Scholar 

  12. Worth LL, Lafleur EA, Jia SF et al. Fas expression inversely correlates with metastatic potential in osteosarcoma cells. Oncol Rep 2002; 9(4): 823–7.

    PubMed  CAS  Google Scholar 

  13. Berlin O, Samid D, Donthineni-Rao R et al. Development of a novel spontaneous metastasis model of human osteosarcoma transplanted orthotopically into bone of athymic mice. Cancer Res 1993; 53(20): 4890–5.

    PubMed  CAS  Google Scholar 

  14. Meyer WH, Houghton JA, Houghton PJ et al. Development and characterization of pediatric osteosarcoma xenografts. Cancer Res 1990; 50(9): 2781–5.

    PubMed  CAS  Google Scholar 

  15. Grenman R, Burk D, Virolainen E et al. Clonogenic cell assay for anchorage-dependent squamous carcinoma cell lines using limiting dilution. Int J Cancer 1989; 44(1): 131–6.

    PubMed  CAS  Google Scholar 

  16. Vihinen P, Riikonen T, Laine A et al. Integrin α2β1 in tumorigenic human osteosarcoma cell lines regulates cell adhesion, migration, and invasion by interaction with type I collagen. Cell Growth Differ 1996; 7(4): 439–47.

    PubMed  CAS  Google Scholar 

  17. Raz A, Hanna N, Fidler IJ. In vivo isolation of a metastatic tumor cell variant involving selective and nonadaptive processes. J Natl Cancer Inst 1981; 66(1): 183–9.

    PubMed  CAS  Google Scholar 

  18. Nicolson GL, Custead SE. Tumor metastasis is not due to adaptation of cells to a new organ environment. Science 1982; 215(4529): 176–8.

    PubMed  CAS  Google Scholar 

  19. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer 1997; 80(Suppl 8): 1529–37.

    Article  PubMed  CAS  Google Scholar 

  20. Yoshida BA, Sokoloff MM, Welch DR et al. Metastasis-suppressor genes: a review and perspective on an emerging field. J Natl Cancer Inst 2000; 92(21): 1717–30.

    Article  PubMed  CAS  Google Scholar 

  21. Izumi Y, Taniuchi Y, Tsuji T et al. Characterization of human colon carcinoma variant cells selected for sialyl Lex carbohydrate antigen: liver colonization and adhesion to vascular endothelial cells. Exp Cell Res 1995; 216(1): 215–21.

    Article  PubMed  CAS  Google Scholar 

  22. Al-Mehdi AB, Tozawa K, Fisher AB et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis. Nat Med 2000; 6(1): 100–2.

    Article  PubMed  CAS  Google Scholar 

  23. Ito S, Nakanishi H, Ikehara Y et al. Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. Int J Cancer 2001; 93(2): 212–7.

    Article  PubMed  CAS  Google Scholar 

  24. Miller CW, Aslo A, Won A et al. Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J Cancer Res Clin Oncol 1996; 122(9): 559–65.

    Article  PubMed  CAS  Google Scholar 

  25. Nielsen GP, Burns KL, Rosenberg AE et al. CDKN2A gene deletions and loss of p16 expression occur in osteosarcomas that lack RB alterations. Am J Pathol 1998; 153(1): 159–63.

    PubMed  CAS  Google Scholar 

  26. Yokota J, Sugimura T. Multiple steps in carcinogenesis involving alterations of multiple tumor suppressor genes. FASEB J 1993; 7(10): 920–5.

    PubMed  CAS  Google Scholar 

  27. Park YB, Park MJ, Kimura K et al. Alterations in the INK4a/ARF locus and their effects on the growth of human osteosarcoma cell lines. Cancer Genet Cytogenet 2002; 133(2): 105–11.

    Article  PubMed  CAS  Google Scholar 

  28. Radinsky R, Fidler IJ, Price JE et al. Terminal differentiation and apoptosis in experimental lung metastases of human osteogenic sarcoma cells by wild type p 53. Oncogene 1994; 9(7): 1877–83.

    PubMed  CAS  Google Scholar 

  29. Stanelle J, Stiewe T, Theseling CC et al. Gene expression changes in response to E2F1 activation. Nucleic Acids Res 2002; 30(8): 1859–67.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson P, Puisieux A. Is the KAI1 metastasis suppressor gene a cellular target of p53? A review of current evidence. Biochem Biophys Res Comm 2000; 278(3): 499–502.

    Article  PubMed  CAS  Google Scholar 

  31. Mukhopadhyay D, Tsiokas L, Sukhatme VP. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 1995; 55(24): 6161–5.

    PubMed  CAS  Google Scholar 

  32. Kawai A, Ozaki T, Ikeda S et al. Two distinct cell lines derived from a human osteosarcoma. J Cancer Res Clin Oncol 1989; 115(6): 531–6.

    Article  PubMed  CAS  Google Scholar 

  33. Ladanyi M, Cha C, Lewis R et al. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res 1993; 53(1): 16–8.

    PubMed  CAS  Google Scholar 

  34. O'Bryan JP, Frye RA, Cogswell PC et al. Axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol 1991; 11(10): 5016–31.

    PubMed  Google Scholar 

  35. Nakano T, Ishimoto Y, Kishino J et al. Cell adhesion to phosphatidylserine mediated by a product of growth arrest-specific gene 6. J Biol Chem 1997; 272(47): 29411–4.

    Article  PubMed  CAS  Google Scholar 

  36. McCloskey P, Fridell YW, Attar E et al. GAS6 mediates adhesion of cells expressing the receptor tyrosine kinase Axl. J Biol Chem 1997; 272(37): 23285–91.

    Article  PubMed  CAS  Google Scholar 

  37. Wimmel A, Glitz D, Kraus A et al. Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer 2001; 37(17): 2264–74.

    Article  PubMed  CAS  Google Scholar 

  38. Craven RJ, Xu LH, Weiner TM et al. Receptor tyrosine kinases expressed in metastatic colon cancer. Int J Cancer 1995; 60(6): 791–7.

    PubMed  CAS  Google Scholar 

  39. Wu CW, Li AF, Chi CW et al. Clinical significance of AXL kinase family in gastric cancer. Anticancer Res 2002; 22(2B): 1071–8.

    PubMed  CAS  Google Scholar 

  40. Quong RY, Bickford ST, Ing YL et al. Protein kinases in normal and transformed melanocytes. Melanoma Res 1994; 4(5): 313–9.

    PubMed  CAS  Google Scholar 

  41. Weiner TM, Liu ET, Craven RJ et al. Expression of growth factor receptors, the focal adhesion kinase, and other tyrosine kinases in human soft tissue tumors. Ann Surg Oncol 1994; 1(1): 18–27.

    Article  PubMed  CAS  Google Scholar 

  42. Weeraratna AT, Jiang Y, Hostetter G et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 2002; 1(3): 279–88.

    Article  PubMed  CAS  Google Scholar 

  43. Finzi E, Fleming T, Segatto O et al. The human transforming growth factor type alpha coding sequence is not a direct-acting oncogene when overexpressed in NIH 3T3 cells. Proc Natl Acad Sci USA 1987; 84(11): 3733–7.

    Article  PubMed  CAS  Google Scholar 

  44. Khazaie K, Schirrmacher V, Lichtner RB. EGF receptor in neoplasia and metastasis. Cancer Metast Rev 1993; 12(3–4): 255–74.

    Article  CAS  Google Scholar 

  45. Kawanami O, Ferrans VJ, Roberts WC et al. Anchoring fibrils. A new connective tissue structure in fibrotic lung disease. Am J Pathol 1978; 92(2): 389–410.

    PubMed  CAS  Google Scholar 

  46. Sakai LY, Keene DR, Morris NP et al. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol 1986; 103(4): 1577–86.

    Article  PubMed  CAS  Google Scholar 

  47. Visser R, Arends JW, Leigh IM et al. Patterns and composition of basement membranes in colon adenomas and adenocarcinomas. J Pathol 1993; 170(3): 285–90.

    Article  PubMed  CAS  Google Scholar 

  48. Raingeaud J, Whitmarsh AJ, Barrett T et al. MKK3-and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 1996; 16(3): 1247–55.

    PubMed  CAS  Google Scholar 

  49. Li W, Nadelman C, Henry G et al. The p38-MAPK/SAPK pathway is required for human keratinocyte migration on dermal collagen. J Invest Dermatol 2001; 117(6): 1601–11.

    Article  PubMed  CAS  Google Scholar 

  50. Westermarck J, Li SP, Kallunki T et al. p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Mol Cell Biol 2001; 21(7): 2373–83.

    Article  PubMed  CAS  Google Scholar 

  51. Montero L, Nagamine Y. Regulation by p38 mitogen-activated protein kinase of adenylate-and uridylate-rich element-mediated urokinasetype plasminogen activator (uPA) messenger RNA stability and uPAdependent in vitro cell invasion. Cancer Res 1999; 59(20): 5286–93.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yokota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, T., Tani, M., Ishibashi, Y. et al. Biological properties and gene expression associated with metastatic potential of human osteosarcoma. Clin Exp Metastasis 20, 665–674 (2003). https://doi.org/10.1023/A:1027355610603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027355610603

Navigation