Skip to main content
Log in

Entropy-Driven Phase Transitions in Multitype Lattice Gas Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In multitype lattice gas models with hard-core interaction of Widom–Rowlinson type, there is a competition between the entropy due to the large number of types, and the positional energy and geometry resulting from the exclusion rule and the activity of particles. We investigate this phenomenon in four different models on the square lattice: the multitype Widom–Rowlinson model with diamond-shaped resp. square-shaped exclusion between unlike particles, a Widom–Rowlinson model with additional molecular exclusion, and a continuous-spin Widom–Rowlinson model. In each case we show that this competition leads to a first-order phase transition at some critical value of the activity, but the number and character of phases depend on the geometry of the model. We also analyze the typical geometry of phases, combining percolation techniques with reflection positivity and chessboard estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Aizenman, On the slow decay of O(2) correlations in the absence of topological excitations: remark on the Patrascioiu-Seiler model, J. Stat. Phys. 77:351-359 (1994).

    Google Scholar 

  2. J. van den Berg and C. Maes, Disagreement percolation in the study of Markov fields, Ann. Probab. 22:749-763 (1994).

    Google Scholar 

  3. G. R. Brightwell, O. Häggström, and P. Winkler, Nonmonotonic behavior in hardcore and Widom-Rowlinson models, J. Stat. Phys. 94:415-435 (1998).

    Google Scholar 

  4. L. Chayes, R. Kotecký, and S. Shlosman, Aggregation and intermediate phases in dilute spin systems, Commun. Math. Phys. 171:203-232 (1995).

    Google Scholar 

  5. L. Chayes, R. Koteckyý, and S. Shlosman, Staggered phases in diluted systems with continuous spins, Commun. Math. Phys. 189:631-640 (1997).

    Google Scholar 

  6. R. L. Dobrushin and S. B. Shlosman, Phases corresponding to minima of the local energy, Selecta Math. Sov. 1:317-338 (1981).

    Google Scholar 

  7. J. Fröhlich and D. A. Huckaby, Percolation in hard-core lattice gases and a model ferrofluid, J. Stat. Phys. 38:809-821 (1985).

    Google Scholar 

  8. M. Fukuyama, Discrete symmetry breaking for certain short-range interactions, J. Stat. Phys. 98:1049-1061 (2000).

    Google Scholar 

  9. H.-O. Georgii, Gibbs Measures and Phase Transitions (de Gruyter, Berlin/New York, 1998).

    Google Scholar 

  10. H.-O. Georgii, O. Häggström, and C. Maes, The random geometry of equilibrium phases, in Phase Transitions and Critical Phenomena, Vol. 18, Domb and J. L. Lebowitz, eds. (Academic Press, 2000).

  11. R. Kotecký and S. Shlosman, First-order phase transitions in large entropy lattice systems, Commun. Math. Phys. 83:493-550 (1982).

    Google Scholar 

  12. J. L. Lebowitz and G. Gallavotti, Phase transition in binary lattice gases, J. Math. Phys. 12:1129-1133 (1971).

    Google Scholar 

  13. J. L. Lebowitz, A. Mazel, P. Nielaba, and L. Šamaj, Ordering and demixing transitions in multicomponent Widom-Rowlinson models, Phys. Rev. E 52:5985-5996 (1995).

    Google Scholar 

  14. P. Nielaba and J. L. Lebowitz, Phase transitions in the multicomponent Widom-Rowlinson model and in hard cubes on the BCC-lattice, Physica A 244:278-284 (1997).

    Google Scholar 

  15. A. Patrascioiu and E. Seiler, Phase structure of two-dimensional spin models and percolation, J. Stat. Phys. 69:573-595 (1992).

    Google Scholar 

  16. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading).

  17. L. K. Runnels and J. L. Lebowitz, Phase transitions of a multicomponent Widom-Rowlinson model, J. Math. Phys. 15:1712-1717 (1974).

    Google Scholar 

  18. S. B. Shlosman, The method of reflection positivity in the mathematical theory of first-order phase transitions, Russ. Math. Surveys 41(3):83-134 (1986).

    Google Scholar 

  19. B. Widom and J. S. Rowlinson, New model for the study of liquid-vapor phase transition, J. Chem. Phys. 52:1670-1684 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgii, HO., Zagrebnov, V. Entropy-Driven Phase Transitions in Multitype Lattice Gas Models. Journal of Statistical Physics 102, 35–67 (2001). https://doi.org/10.1023/A:1026556508220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026556508220

Navigation