Skip to main content
Log in

A Thermodynamic Property Model for Fluid-Phase Propane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A fundamental equation of state for propane (R-290), formulated in terms of the non-dimensional Helmholtz free energy, is presented. It was developed based on selected reliable measurements for pressure-volume-temperature (PVT), isochoric and isobaric heat capacities, speed of sound, and the saturation properties which were all converted to ITS-90. Supplementary input data calculated from a virial equation for the vapor-phase PVT properties at lower temperatures and other correlations for the saturated vapor pressures and saturated vapor- and liquid-densities have also been used. The present equation of state includes 19 terms in the residual part and represents most of the reliable experimental data accurately in the range of validity from 85.48 K (the triple point temperature) to 623 K, at pressures to 103 MPa, and at densities to 741 kg·m−3. The smooth behavior of the derived thermodynamic properties in the entire fluid phase is demonstrated. In addition, graphical and statistical comparisons between experimental data and the available thermodynamic models, including the present one, showed that the present model can provide a physically sound representation of all the thermodynamic properties of engineering importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. D. Goodwin and W. M. Haynes, Thermophysical Properties of Propane from 85 to 700 K at Pressures to 70 MPa, NBS Monograph, Vol. 170 (U.S. Department of Commerce, Washington, DC, 1982).

    Google Scholar 

  2. R. Tillner-Roth, several programs for the modeling were provided as private communication (1996).

  3. R. Tillner-Roth and A. Yokozeki, J. Phys. Chem. Ref. Data 26:1273 (1997).

    Google Scholar 

  4. R. Tillner-Roth, J. Li, A. Yokozeki, H. Sato, and K. Watanabe, Thermodynamic Properties of Pure and Blended Hydrofluorocarbon (HFC) Refrigerants (Jpn. Soc. Refrig. Air Cond. Engrs., Tokyo, 1998).

    Google Scholar 

  5. H. H. Reamer, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem. 41:482 (1949).

    Google Scholar 

  6. P. P. Dawson and J. J. McKetta, Petroleum Refiner 39:151 (1960).

    Google Scholar 

  7. W. Warowny, P. Wielopolski, and J. Stecki, Physica 91A:73 (1978).

    Google Scholar 

  8. R. H. P. Thomas and R. H. Harrison, J. Chem. Eng. Data 27:1 (1982).

    Google Scholar 

  9. G. C. Straty and A. M. F. Palavra, J. Res. Natl. Bur. Stand. 89:375 (1984).

    Google Scholar 

  10. P. Dittmer, F. Schulz, and G. Strese, Chemie-Ing.-Techn. 34:437 (1962).

    Google Scholar 

  11. J. F. Ely and R. Kobayashi, J. Chem. Eng. Data 23:221 (1978).

    Google Scholar 

  12. W. M. Haynes, J. Chem. Thermodyn. 15:419 (1983).

    Google Scholar 

  13. H. Kratzke and S. Muüller, J. Chem. Thermodyn. 16:1157 (1984).

    Google Scholar 

  14. R. D. Goodwin, J. Res. Natl. Bur. Stand. 83:440 (1978).

    Google Scholar 

  15. V. F. Yesavage, D. L. Katz, and J. E. Powers, J. Chem. Eng. Data 14:197 (1969).

    Google Scholar 

  16. V. F. Yesavage, Ph.D. dissertation (University of Michigan, Ann Arbor, 1968).

  17. G. Ernst and J. Büsser, J. Chem. Thermodyn. 2:787 (1970).

    Google Scholar 

  18. A. Lacam, J. Rech. Centre Natl. Rech. Sci. Lab. Bellevue 34:25 (1956).

    Google Scholar 

  19. J. P. M. Trusler and M. P. Zarari, J. Chem. Thermodyn. 28:329 (1996).

    Google Scholar 

  20. B. A. Younglove, J. Res. Natl. Bur. Stand. 86:165 (1981).

    Google Scholar 

  21. R. Niepmann, J. Chem. Thermodyn. 16:851 (1984).

    Google Scholar 

  22. J. D. Kemp and C. J. Egan, J. Am. Chem. Soc. 60:1521 (1938).

    Google Scholar 

  23. N. L. Helgeson and B. H. Sage, J. Chem. Eng. Data 12:47 (1967).

    Google Scholar 

  24. G. F. Carruth and R. Kobayashi, J. Chem. Eng. Data 18:115 (1973).

    Google Scholar 

  25. J. Teichmann, Ph.D. dissertation (Ruhr University, Bochum, 1978).

  26. H. Kratzke, J. Chem. Thermodyn. 12:305 (1980).

    Google Scholar 

  27. P. Sliwinski, Z. Phys. Chem. Neue Folge 63:263 (1969).

    Google Scholar 

  28. J. B. Rodosevich and R. C. Miller, AIChE J. 19:729 (1973).

    Google Scholar 

  29. C. R. McClune, Cryogenics 16:289 (1976).

    Google Scholar 

  30. W. M. Haynes and M. J. Hiza, J. Chem. Thermodyn. 9:179 (1977).

    Google Scholar 

  31. J. E. Orrit and J. M. Laupretre, Adv. Cryog. Eng. 23:573 (1978).

    Google Scholar 

  32. J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data 2:427 (1973).

    Google Scholar 

  33. M. Jaeschke and P. Schley, Int. J. Thermophys. 16:1381 (1995).

    Google Scholar 

  34. J. W. Magee, new information for the saturation vapor-pressure of lower temperatures was provided as a private communication (1999).

  35. H.-L. Zhang, H. Sato, and K. Watanabe, J. Chem. Eng. Data 41:1401 (1996).

    Google Scholar 

  36. P. J. Mohr and B. N. Taylor, J. Phys. Chem. Ref. Data 28:1713 (1999).

    Google Scholar 

  37. T. B. Coplen, J. Phys. Chem. Ref. Data 26:1239 (1997).

    Google Scholar 

  38. B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:577 (1987).

    Google Scholar 

  39. R. Span and W. Wagner, submitted to Int. J. Thermophys. (2000).

  40. M. O. McLinden, S. A. Klein, E. W. Lemmon, and A. P. Peskin, NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures (REFPROP) Ver. 6.01 (U.S. Department of Commerce, Washington, DC, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, H., Watanabe, K. A Thermodynamic Property Model for Fluid-Phase Propane. International Journal of Thermophysics 21, 1045–1072 (2000). https://doi.org/10.1023/A:1026441903474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026441903474

Navigation