Skip to main content
Log in

Stability of Attractive Bose–Einstein Condensates

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose the critical nonlinear Schrödinger equation with a harmonic potential as a model of attractive Bose–Einstein condensates. By an elaborate mathematical analysis we show that a sharp stability threshold exists with respect to the number of condensate particles. The value of the threshold agrees with the existing experimental data. Moreover with this threshold we prove that a ground state of the condensate exists and is orbital stable. We also evaluate the minimum of the condensate energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. C. Bradley, C. A. Sackett, and R. G. Hulet, Bose-Einstein condensation of Lithium: observation of limted condensate number, Phys. Rev. Lett. 78:985–989 (1997).

    Google Scholar 

  2. J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schro- dinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 25:197–215 (1997).

    Google Scholar 

  3. T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Metodos Matematicos, Vol. 22 (Rio de Janeiro, 1989).

  4. T. Cazenave and M. Esteban, On the stability of stational states for nonlinear Schro- dinger equations with an external magnetic field, Mat. Apl. Comp. 7:155–168 (1988).

    Google Scholar 

  5. T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schro- dinger equations, Commun. Math. Phys. 85:549–561 (1982).

    Google Scholar 

  6. F. Dalfovo, S. Giorgini, Lev P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics 71(3):463–512 (1999).

    Google Scholar 

  7. W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91:283–308 (1986).

    Google Scholar 

  8. D. Fujiwara, Remarks on convengence of the Feynman path integrals, Duke Math. J. 47:559–600 (1980).

    Google Scholar 

  9. E. P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4:195–207 (1963).

    Google Scholar 

  10. C. Huepe, S. Métens, G. Dewel, P. Borckmans, and M. E. Brachet, Decay rates in attractive Bose-Einstein condensates, Phys. Rev. Lett. 82:1616–1619 (1999).

    Google Scholar 

  11. Yu. Kagan, A. E. Muryshev, and G. V. Shlyapnikov, Collapse and Bose-Einstein condensation in a trapped Bose gas with nagative scattering length, Phys. Rev. Lett. 81:933–937 (1998).

    Google Scholar 

  12. M. K. Kwong, Uniqueness of positive solutions of Δu-u+up=0 in RN, Arch. Rat. Mech. Anal. 105:243–266 (1989).

    Google Scholar 

  13. J. L. Lebowitz, H. A. Rose, and E. R. Speer, Statistical mechanics of the nonlinear Schro- dinger equation, J. Statist. Phys. 50:657–687 (1988).

    Google Scholar 

  14. F. Merle, Construction of solutions with exactly k blowup points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys. 129(2):223–240 (1990).

    Google Scholar 

  15. F. Merle, On uniqueness and continuation properties after blowup time of self-similar solutions of nonlinear Schrödinger equations with critical exponent and critical mass, Comm. Pure Appl. Math. 45(2):203–254 (1992).

    Google Scholar 

  16. F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69(2):427–454 (1993).

    Google Scholar 

  17. F. Merle and Y. Tsutsumi, L 2 concentration of blowup solutions for the nonlinear Schro- dinger equation with critical power nonlinearity, J. Differential Equations 84(2):205–214 (1990).

    Google Scholar 

  18. H. Nawa, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math. 52:193–270 (1999).

    Google Scholar 

  19. H. Nawa and M. Tsutsumi, On blowup for the pseudo-conformally invariant nonlinear Schrödinger equation II, Comm. Pure Appl. Math. 51:417–428 (1998).

    Google Scholar 

  20. H; Nawa, Two points blowup in solutions of the nonlinear Schrödinger equation with quartic potential on R, J. Statist. Phys. 91:439–458 (1997).

    Google Scholar 

  21. T. Ogawa and Y. Tsutsumi, Blow-up of H 1 solution for the nonlinear Schro- dinger equation, J. Differential Equations 92(2):317–330 (1991).

    Google Scholar 

  22. Y.-G. Oh, Cauchy Problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, Journal of Differential Equations 81:255–274 (1989).

    Google Scholar 

  23. M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system, Ann. Inst. H. Poincaré, Phys. Theor. 62:69–80 (1995).

    Google Scholar 

  24. W. Omana and M. Willem, Homoclinic orbit for a class of Hamiltonian systems, Differential and Integral Equations 5(5):1115–1120 (1992).

    Google Scholar 

  25. L. P. Pitaevskii, Vortex lines in an imparfect Bose gas, Sov. Phys. JETP 13:451–454 (1961).

    Google Scholar 

  26. S.I. Pohozaev, Eingenfunctions of the equation Δuf (u)=0, Sov. Math. Doklady 165:1408–1411 (1965).

    Google Scholar 

  27. P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43:270–291 (1992).

    Google Scholar 

  28. H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schro- dinger equation with linear potential, Physica D 30:207–218 (1988).

    Google Scholar 

  29. C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse (Springer, 1999).

  30. M. Tsutsumi, Nonexistence of Global Solutions to the Cauchy Problem for Nonlinear Schrödinger Equations (unpublished manuscript).

  31. T. Tsurumi and M. Wadati, Stability of the D-dimensional nonlinaer Schrödinger equation under confined potential, J. Phys. Soc. Jpn. 68:1531–1536 (1999).

    Google Scholar 

  32. M. Wadati and T. Tsurumi, Critical number of atoms for the magnetically trapped Bose- Einstein condensate with negative s-wave scattering length, Phys. Lett. A 247:287–293 (1998).

    Google Scholar 

  33. M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Commun. Math. Phys. 87:567–576 (1983).

    Google Scholar 

  34. M. I. Weinstein, On the structure and formation singularitres in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations 11:545–565 (1986).

    Google Scholar 

  35. K. Yajima, On fundamental solution of time dependent Schrödinger equations, Contemporary Mathematics 217:49–68 (1998).

    Google Scholar 

  36. J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein- Gordon equations, to appear in Nonlinear Anal.: Theory, Methods and Applications.

  37. J. Zhang, Sharp Criteria for Blowup and Global Existence in Nonlinear Schrödinger Equations under a Harmonic Potential (1999), preprint.

  38. J. Zhang, Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys. 51:498–505 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J. Stability of Attractive Bose–Einstein Condensates. Journal of Statistical Physics 101, 731–746 (2000). https://doi.org/10.1023/A:1026437923987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026437923987

Navigation