Skip to main content
Log in

Astrocytes Increase the Functional Expression of P-Glycoprotein in an In Vitro Model of The Blood-Brain Barrier

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate the influence of astrocytes on P-glycoprotein (Pgp) expression and intracellular accumulation of Pgp substrates, separate from their net transcellular transport across the blood-brain barrier (BBB).

Methods. An in vitroBBB model was used, comprising of brain capillary endothelial cells (BCEC) monolayers or BCEC co-cultured with astrocytes.

Results. BCEC+astrocyte co-cultures seemed to express a higher level of Pgp compared to BCEC monolayers. Inhibition of Pgp results in an increased intracellular accumulation of Pgp substrates in both BCEC monolayers and BCEC+astrocyte co-cultures, and increased the sensitivity for vinblastine mediated disruption of the in vitro BBB (called the vinblastine exclusion assay). BCEC monolayers were more sensitive to vinblastine mediated disruption compared to BCEC+astrocyte co-cultures. In the latter, but not in BCEC monolayers, an inhibitable polar transport of Pgp substrates was only found from the brain to the blood side of the filter.

Conclusions. Astrocytes increase the functional expression of Pgp in our in vitroBBB model. These results also illustrate that an important role for Pgp on the BBB is to protect the barrier against intracellular accumulation of cytotoxic BBB disrupting compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. C. Cordon-Cardo, J. P. O'Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrugresistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. U.S.A. 86:695–698 (1989).

    Google Scholar 

  2. A. Tsuji, T. Terasaki, Y. Takabatake, Y. Tenda, I. Tamai, T. Yamashima, S. Moritani, T. Tsuruo, and J. Yamashita. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 51:1427–1437 (1992).

    Google Scholar 

  3. L. Fenart, V. Buee-Scherrer, L. Descamps, C. Duhem, M. G. Poullain, R. Cecchelli, and M. P. Dehouck. Inhibition of P-glycoprotein: rapid assessment of its implication in blood-brain barrier integrity and drug transport to the brain by an in vitro model of the blood-brain barrier. Pharm. Res. 15:993–1000 (1998).

    Google Scholar 

  4. D. J. Begley, D. Lechardeur, Z. D. Chen, C. Rollinson, M. Bardoul, F. Roux, D. Scherman, and N. J. Abbott. Functional expression of P-glycoprotein in an immortalised cell line of rat brain endothelial cells, RBE4. J. Neurochem 67:988–995 (1996).

    Google Scholar 

  5. R. C. Janzer and M. C. Raff. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257 (1987).

    Google Scholar 

  6. W. M. Pardridge, P. L. Golden, Y. S. Kang, and U. Bickel. Brain microvascular and astrocyte localization of P-glycoprotein. J. Neurochem. 68:1278–1285 (1997).

    Google Scholar 

  7. B. Joly, V. Lecureur, C. Puozzo, A. Guillouzo, and O. Fardel. Involvement of P-glycoprotein in an in vitro blood-brain barrier model. Int. J. Oncology 9:1029–1033 (1996).

    Google Scholar 

  8. A. Seelig. A general pattern for substrate recognition by P-glycoprotein. Eur. J. Biochem. 251:252–261 (1998).

    Google Scholar 

  9. I. C. J. van der Sandt, M. C. Blom-Roosemalen, A. G. de Boer, and D. D. Breimer. Specificity of doxorubicin versus thodamine-123 in assessing P-glycoprotein functionality in the LLC-PK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur. J. Pharm. Sci. (in press).

  10. S. Nag. Role of the endothelial cytoskeleton in blood-brain-barrier permeability to protein. Acta Neuropathol. Berl. 90:454–460 (1995).

    Google Scholar 

  11. L. L. Mitic and J. M. Anderson. Molecular architecture of tight junctions. Annu. Rev. Physiol. 60:121–142 (1998).

    Google Scholar 

  12. D. Lechardeur and D. Scherman. Functional expression of the P-glycoprotein mdr in primary cultures of bovine cerebral capillary endothelial cells. Cell Biol. Toxicol. 11:283–293 (1995).

    Google Scholar 

  13. E. Beaulieu, M. Demeule, J. F. Pouliot, D. A. Averill Bates, G. F. Murphy, and R. Beliveau. P-glycoprotein of blood brain barrier: Cross-reactivity of Mab C219 with a 190 kDa protein in bovine and rat isolated brain capillaries. Biochim. Biophys. Acta 1233: 27–32 (1995).

    Google Scholar 

  14. U. Bommhardt, J. C. Cerottini, and H. R. MacDonald. Heterogeneity in P-glycoprotein (multidrug resistance) activity among murine peripheral T cells: Correlation with surface phenotype and effector function. Eur. J. Immunol. 24:2974–2981 (1994).

    Google Scholar 

  15. J. L. Madara. Regulation of the movement of solutes across tight junctions. Annu. Rev. Physiol. 60:143–159 (1998).

    Google Scholar 

  16. C. Mouchard-Delmas, B. Gourdier, R. Vistelle, and M. Wiczewski. Modification of the blood-brain barrier permeability by vinorelbine: Effect of intracarotid infusion compared with intravenous infusion. Anticancer Drugs 7:213–219 (1996).

    Google Scholar 

  17. V. A. Levin. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem. 23:682–684 (1980).

    Google Scholar 

  18. A. H. Schinkel, E. Wagenaar, C. A. Mol, and L. van Deemter. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97:2517–2524 (1996).

    Google Scholar 

  19. D. Leveque and F. Jehl. P-glycoprotein and pharmacokinetics. Anticancer Res. 15:331–336 (1995).

    Google Scholar 

  20. E. C. de Lange, G. de Bock, A. H. Schinkel, A. G. de Boer, and D. D. Breimer. BBB transport and P-glycoprotein functionality using MDR1A (-/-) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm. Res. 15:1657–1665 (1998).

    Google Scholar 

  21. O. C. Meijer, E. C. de Lange, D. D. Breimer, A. G. de Boer, J. O. Workel, and E. R. de Kloet. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 139:1789–1793 (1998).

    Google Scholar 

  22. M. K. Spigelman, R. A. Zappulla, J. Johnson, S. J. Goldsmith, L. I. Malis, and J. F. Holland. Etoposide-induced blood-brain barrier disruption. Effect of drug compared with that of solvents. J. Neurosurg. 61:674–678 (1984).

    Google Scholar 

  23. L. A. MacDonell, P. E. Potter, and R. A. Leslie. Localized changes in blood-brain barrier permeability following the administration of antineoplastic drugs. Cancer Res. 38:2930–2934 (1978).

    Google Scholar 

  24. A. M. Yahanda, K. M. Alder, G. A. Fisher, N. A. Brophy, J. Halsey, R. I. Hardy, M. P. Gosland, B. L. Lum, and B. I. Sikic. Phase I trial of etoposide with cyclosporine as a modulator of multidrug resistance. J. Clin. Oncol. 10:1624–1634 (1992).

    Google Scholar 

  25. N. L. Bartlett, B. L. Lum, G. A. Fisher, N. A. Brophy, M. N. Ehsan, J. Halsey, and B. I. Sikic. Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance. J. Clin. Oncol. 12:835–842 (1994).

    Google Scholar 

  26. B. L. Lum and M. P. Gosland. MDR expression in normal tissues. Pharmacologic implications for the clinical use of P-glycoprotein inhibitors. Hematol. Oncol. Clin. North Am. 9:319–336 (1995).

    Google Scholar 

  27. J. Wijnholds, G. L. Scheffer, M. van der Valk, P. van der Valk, J. H. Beijnen, R. J. Scheper, and P. Borst. Multidrug resistance protein 1 protects the oropharyngeal mucosal layer and the testicular tubules against drug-induced damage. J. Exp. Med. 188: 797–808 (1998).

    Google Scholar 

  28. M. Cereijido, J. Valdes, L. Shoshani, and R. G. Contreras. Role of tight junctions in establishing and maintaining cell polarity. Annu. Rev. Physiol. 60:161–177 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaillard, P.J., van der Sandt, I.C.J., Voorwinden, L.H. et al. Astrocytes Increase the Functional Expression of P-Glycoprotein in an In Vitro Model of The Blood-Brain Barrier. Pharm Res 17, 1198–1205 (2000). https://doi.org/10.1023/A:1026406528530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026406528530

Navigation