Skip to main content
Log in

On the Origin and Energy of Triple Junction Defects Due to the Finite Length of Grain Boundaries

  • Published:
Interface Science

Abstract

King [1] established that due to the discrete nature of their dislocation structure, finite length grain boundaries (GBs) in polycrystalline materials possess discrete values of misorientation angle. For a GB with a length that is not a multiple of the GB period, this leads to the formation of specific disclinations at their junctions with neighboring GBs, which compensate the difference between the misorientations of finite and infinite boundaries. In the present paper the origin of these compensating disclinations within GB triple junctions is elucidated and their strength is calculated using the disclination-structural unit model. It is shown that for a GB with length of about 10 nm the junction disclinations can have a strength value not more than 1°, in contrast to King's calculations that indicate much larger values. Elastic energies of triple junctions due to compensating disclinations are calculated for both equilibrium and non-equilibrium structures of a finite length GB, which differ by the position of the grain boundary dislocation network with respect to the junctions. The calculations show that triple junction energies are comparable to dislocation energies, and that compensating disclinations can play a significant role in the properties of nanocrystalline metals with grain sizes less than about 10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. King, Mater. Sci. Forum. 126–128, 221 (1993).

    Article  Google Scholar 

  2. A.P. Sutton and V. Vitek, Philos. Trans. Roy. Soc. (London) A309, 1 (1983).

    Article  Google Scholar 

  3. W.T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).

    Article  Google Scholar 

  4. G.-J. Wang and V. Vitek, Acta Metall. 34, 951 (1986).

    Article  Google Scholar 

  5. K.K. Shih and J.C.M. Li, Surf. Sci. 50, 109 (1975).

    Article  Google Scholar 

  6. V.Yu. Gertsman, A.A. Nazarov, A.E. Romanov, R.Z. Valiev, and V.I. Vladimorov, Philos. Mag. A59, 1113 (1989).

    Article  Google Scholar 

  7. A.A. Nazarov, O.A. Shenderova, and D.W. Brenner, Mater. Sci. Eng. A281, 148 (2000).

    Article  Google Scholar 

  8. A.P. Sutton, Acta Metall. Mater. 36, 1291 (1988).

    Article  Google Scholar 

  9. K.N. Mikaelyan, I.A. Ovid'ko, and A.E. Romanov, Mater. Sci. Eng. A259, 132 (1999).

    Article  Google Scholar 

  10. K.N. Mikaelyan, I.A. Ovid'ko, and A.E. Romanov, Phys. Metal Metallogr. 90(3), 224 (2000).

    Google Scholar 

  11. A.H. King, Interface Sci. 7, 251 (1999).

    Article  Google Scholar 

  12. A.A. Nazarov and A.E. Romanov, Philos. Mag. Lett. 60, 187 (1989).

    Article  Google Scholar 

  13. P. Müllner and W.-M. Kuschke, Scripta Materialia 36, 1451 (1997).

    Article  Google Scholar 

  14. G.P. Dimitrakopulos, Th. Karakostas, and R.C. Pond, Interface Sci. 4, 129 (1996).

    Google Scholar 

  15. G.P. Dimitrakopulos, Ph. Komninou, Th. Karakostas, and R.C. Pond, Interface Sci. 7, 217 (1999).

    Article  Google Scholar 

  16. V.I. Vladimirov, V.Y. Gertsman, A.A. Nazarov, and A.E. Romanov, Preprint No. 1150 (Leningrad, A.F. Ioffe Physico-Technical Institute, 1987).

  17. J.P. Hirth and J. Lothe, Theory of Dislocations (John Wiley and Sons, New York, 1982).

    Google Scholar 

  18. A. Caro and H. Van Swygenhoven, Phys. Rev. B63, 134101 (2001).

    Article  Google Scholar 

  19. S.G. Srinivasan, J.W. Cahn, H. Jonsson, and G. Kalonji, Acta Mater. 47, 2821 (1999).

    Article  Google Scholar 

  20. A.A. Nazarov, A.E. Romanov, and R.Z. Valiev, Scripta Mater.34, 729 (1996).

    Article  Google Scholar 

  21. K. Reimann and R. W¨urschum, J. Appl. Phys. 81, 7186 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, A.A., Bachurin, D.V., Shenderova, O.A. et al. On the Origin and Energy of Triple Junction Defects Due to the Finite Length of Grain Boundaries. Interface Science 11, 417–424 (2003). https://doi.org/10.1023/A:1026143927269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026143927269

Navigation