Skip to main content
Log in

Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in 2+1 Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

One of the more interesting solutions of the (2+1)-dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation is the soliton solutions. We previously derived a complete group classification for the SKdV equation in 2+1 dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on the form of an arbitrary function. The corresponding solutions of the (2+1)-dimensional equation involve up to three arbitrary smooth functions. Consequently, the solutions exhibit a rich variety of qualitative behaviors. In particular, we show the interaction of a Wadati soliton with a line soliton. Moreover, via a Miura transformation, the SKdV is closely related to the Ablowitz–Kaup–Newell–Segur (AKNS) equation in 2+1 dimensions. Using classical Lie symmetries, we consider traveling-wave reductions for the AKNS equation in 2+1 dimensions. It is interesting that neither of the (2+1)-dimensional integrable systems considered admit Virasoro-type subalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Hille, Analytic Function Theory, Vol. 2, Ginn, Boston (1962); H. Schwerdtfeger, Geometry of Complex Numbers, Dover, New York (1979).

    Google Scholar 

  2. I. M. Krichever and S. P. Novikov, Russ. Math. Surv., 35, 53 (1980).

    Google Scholar 

  3. J. Weiss, J. Math Phys., 24, 1405 (1983); 26, 258 (1983).

    Google Scholar 

  4. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math., 53, 249 (1974).

    Google Scholar 

  5. B. Gambier, Acta Math., 33, 1 (1909); P. Painlevé, Bull. Soc. Math. France, 28, 201 (1900); Acta Math., 25, 1 (1902).

    Google Scholar 

  6. M. J. Ablowitz, A. Ramani, and H. Segur, Lett. Nuovo Cimento, 23, 333 (1978).

    Google Scholar 

  7. R. Conte, ed., The Painlevé Property: One Century Later (CRM Series in Mathematical Physics), Springer, New York (1999); M. Musette, “Painlevé analysis for nonlinear partial differential equations,” in: The Painlevé Property: One Century Later (CRM Series in Mathematical Physics, R. Conte, ed.), Springer, New York (1999), p. 517.

    Google Scholar 

  8. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).

    Google Scholar 

  9. F. Nijhoff, “On some 'Schwarzian' equations and their discrete analogues,” in: Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman (Prog. Nonlinear Differ. Equ. Appl., Vol. 26, A. S. Fokas et al., eds.), Birkhäuser, Boston, Mass. (1997), p. 237.

    Google Scholar 

  10. K. Toda and S. Yu, J. Math. Phys., 41, 4747 (2000).

    Google Scholar 

  11. J. Weiss, J. M. Tabor, and G. Carnevale, J. Math. Phys., 24, 522 (1983).

    Google Scholar 

  12. D. David, N. Kamran, D. Levi, and P. Winternitz, J. Math. Phys., 27, 1225 (1986).

    Google Scholar 

  13. B. Champagne and P. Winternitz, J. Math. Phys., 29, 1 (1988).

    Google Scholar 

  14. M. Senthil Velan and M. Lakshmanan, J. Nonlinear Math. Phys., 5, 190 (1998).

    Google Scholar 

  15. K. Kudriashov and P. Pickering, J. Phys. A, 31, 9505 (1998).

    Google Scholar 

  16. J. Ramirez, M. S. Bruzón, C. Muriel, and M. L. Gandarias, J. Phys. A, 36, 1467 (2003).

    Google Scholar 

  17. M. L. Gandarias, M. S. Bruzón, and J. Ramírez, “Classical symmetries for a Boussinesq equation with nonlinear dispersion,” in: Symmetry and Perturbation Theory (D. Bambusi, G. Gaeta, and M. Cadoni, eds.), World Scientific, River Edge, NJ (2001); M. L. Gandarias, M. S. Bruzón, and J. Ramírez, Theor. Math. Phys., 134, 62 (2003).

    Google Scholar 

  18. M. Wadati, J. Phys. Soc. Japan, 34, 1289 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruzón, M.S., Gandarias, M.L., Muriel, C. et al. Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in 2+1 Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions. Theoretical and Mathematical Physics 137, 1378–1389 (2003). https://doi.org/10.1023/A:1026092304047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026092304047

Navigation