Skip to main content
Log in

D'yakonov–Perel' Spin Relaxation Controlled by Electron–Electron Scattering

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The D'yakonov–Perel' mechanism of spin relaxation is connected with the spin splitting of the electron dispersion curve in crystals lacking a center of symmetry. In a two-dimensional noncentrosymmetric system, e.g. quantum well or heterojunction, the spin splitting is a linear function of k, at least for small values of k. We demonstrate that the spin relaxation time τs due to the spin splitting is controlled not only by momentum relaxation processes as widely accepted but also by electron–electron collisions which have no effect on the electron mobility. In order to calculate the time τs taking into account the electron–electron scattering, we have solved the two-dimensional kinetic equation for the electron spin density matrix. The result has been compared with that obtained assuming the momentum scattering to occur due to elastic scattering of electrons by ionized impurities. We have also extended the quasi-elastic approximation to describe the electron–electron collision integral for a spin-polarized three-dimensional electron gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena (Springer Series in Solid State Sciences, Vol. 110) (Springer-Verlag, Berlin, 1995); second edition 1997.

    Google Scholar 

  2. N. S. Averkiev, L. E. Golub, and M. Willander, J. Phys.: Condens. Matter 14, 271(2002).

    Google Scholar 

  3. M. I. D'yakonov and V. Y. Kachorovskii., Fiz. Tekhn. Poluprov. 20, 178(1986) (Sov. Phys. Semicond. 20, 110 (1986)).

    Google Scholar 

  4. E. L. Ivchenko, P. S. Kop'ev, V. P. Kochereshko, I. N. Uraltsev, and D. R. Yakovlev, Pis'ma Zh. Eksp. Teor. Fiz. 47, 407(1988) (JETP Lett. 47, 486 (1988)).

    Google Scholar 

  5. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196(1999).

    Google Scholar 

  6. R. Terauchi, Y. Ohno, T. Adachi, A. Sato, F. Matsukura, A. Tackeuchi, and H. Ohno, Japan. J. Appl. Phys. 38, 2549–2551 (1999).

    Google Scholar 

  7. R. S. Britton, T. Grevatt, A. Malinowski, R. T. Harley, P. Perozzo, A. R. Cameron, and A. Miller, Appl. Phys. Lett. 73, 2140(1998).

    Google Scholar 

  8. E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela (Collected Papers) 2, 162(1959).

    Google Scholar 

  9. E. I. Rashba, Fiz. Tverd. Tela 2, 1224(1960) (Sov. Phys. Solid State 2, 1109 (1960)).

    Google Scholar 

  10. F. G. Ohkawa and Y. Uemura, J. Phys. Soc. Japan 37, 1325(1974).

    Google Scholar 

  11. F. T. Vas'ko, Pis'ma Zh. Eksp. Teor. Fiz. 30, 574(1979) (JETP Lett. 30, 541 (1979)).

    Google Scholar 

  12. Y. A. Bychkov and E. I. Rashba, Pis'ma Zh. Eksp. Teor. Fiz. 39, 66(1984) (JETP Lett. 39, 78 (1984)).

    Google Scholar 

  13. B. Das, S. Datta, and R. Reifenberger, Phys. Rev. B 41, 8278(1989).

    Google Scholar 

  14. E. A. de Andrada e Silva, G. C. Rocca, and F. Bassani, Phys. Rev. B 55, 16293(1997).

    Google Scholar 

  15. N. S. Averkiev, L. E. Golub, and M. Willander, Fiz. Tekhn. Poluprov. 36, 97(2002) (Sov. Phys. Semicond. 36, 91 (2002)).

    Google Scholar 

  16. M. I. D'yakonov and V. I. Perel', Fiz. Tverd. Tela 13, 3581–3585 (1971) (Sov. Phys. Solid State 13, 3023 (1972)).

    Google Scholar 

  17. N. S. Averkiev and L. E. Golub, Phys. Rev. B 60, 15582(1999).

    Google Scholar 

  18. E. L. Ivchenko, Fiz. Tverd. Tela 15, 1566(1973) (Sov. Phys. Solid State 15, 1048 (1973)).

    Google Scholar 

  19. M. M. Glazov and E. L. Ivchenko, Pis'ma Zh. Eksp. Teor. Fiz. 75, 476(2002) (JETP Lett. 75, 403 (2002)).

    Google Scholar 

  20. S. E. Esipov and I.B. Levinson, Pis'ma Zh. Eksp. Teor. Fiz. 42, 193(1985) (JETP Lett. 42, 239 (1985)).

    Google Scholar 

  21. S. E. Esipov and I. B. Levinson, Electron temperature in a two-dimensional electron gas. Energy losses on optical phonons, Zh. Eksp. Teor. Fiz. 90, 330(1986) (Sov. Phys. JETP 63, 191 (1986)).

    Google Scholar 

  22. S. K. Lyo, Phys. Rev. B 34, 10(1986).

    Google Scholar 

  23. M. M. Glazov, to be published.

  24. L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 203(1937) (Phys. Zs. Sowiet. 10, 154, 1936).

    Google Scholar 

  25. E. M. Lifshits and L.P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981) (Russian edition, Moscow, 1997).

    Google Scholar 

  26. M. A. Brand, A. Malinowski, O. Z. Karimov, P. A. Mardsen, R. T. Harley, A. J. Shields, D. Sanvitto, D. A. Ritchie, and M. Y. Simmons, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazov, M.M., Ivchenko, E. D'yakonov–Perel' Spin Relaxation Controlled by Electron–Electron Scattering. Journal of Superconductivity 16, 735–742 (2003). https://doi.org/10.1023/A:1025370024651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025370024651

Navigation