Skip to main content
Log in

Silver Fractal-Like Structures for Metal-Enhanced Fluorescence: Enhanced Fluorescence Intensities and Increased Probe Photostabilities

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Substantial increases in fluorescence emission from fluorophore-protein–coated fractal-like silver structures have been observed. We review two methods for silver fractal structure preparation, which have been employed and studied. The first, a roughened silver electrode, typically yielded a 100-fold increase in fluorophore emission, and the second, silver fractal-like structures grown on glass between two silver electrodes, produced a ≈500-fold increase. In addition, significant increases in probe photostability were observed for probes coated on the silver fractal like structures. These results further serve to compliment our recent work on the effects of nobel metal particles with fluorophores, a relatively new phenomenon in fluorescence we have termed both “metal-enhanced fluorescence” [1] and “radiative decay engineering” [2,3]. These results are explained by the metallic surfaces modifying the radiative decay rate (Γ) of the fluorescent labels. We believe that this new silver-surface preparation, which results in ultrabright and photostable fluorophores, offers a new generic technology platform for increased fluorescence signal levels, with widespread potential applications to the analytical sciences, imaging, and medical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. C. D. Geddes and J. R. Lakowicz (2002) Metal-enhanced fluorescence. J. Fluoresc. 12(2), 121–129.

    Google Scholar 

  2. J. R. Lakowicz (2001) Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 298, 1–24.

    Google Scholar 

  3. J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski (2002) Radiative decay engineering 2: Effects of silver island films on fluorescence intensity lifetimes and resonance energy transfer. Anal. Biochem. 301, 261–277.

    Google Scholar 

  4. J. Malicka, I. Gryczynski, J. Kusba, Y. Shen, and J. R. Lakowicz (2002) Effects of metallic silver particles on resonance energy transfer in labeled bovine serum albumin. Biochem. Biophys. Res. Commun. 294, 886–892.

    Google Scholar 

  5. C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Fang, and J. R. Lakowicz (2003) Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A 107, 3443–3449.

    Google Scholar 

  6. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes (2003) Radiative decay engineering: The role of photonic mode density in biotechnology. J. Phys. D In Press.

  7. J. R. Lakowicz, I. Gryczynski, Y. B. Shen, J. Malicka, and Z. Gryczynski, (2001) Intensified fluorescence. Photonics Spectra 35(10), 96–104.

    Google Scholar 

  8. C. D. Geddes, A. Parfenov, and J. R. Lakowicz (2003) Photodeposition of silver can result in metal-enhanced fluorescence. Appl. Spectrosc. 57, 526–531.

    Google Scholar 

  9. C. D. Geddes, A. Parfenov, D. Roll, J. Fang, and J. R. Lakowicz (2003) Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence. Langmuir In Press.

  10. N. Christodoulides, M. Tran, P. N. Floriano, M. Rodriguez, A. Goodey, M. Ali, D. Neikirk, and J. T. McDevitt (2002) A microchip-based multianalyte assay system for the assessment of cardiac risk. Anal. Chem. 74, 3030–3036.

    Google Scholar 

  11. E. Verpoorte (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23, 677–712.

    Google Scholar 

  12. R. Keir, E. Igata, M. Arundell, W. E. Smith, D. Graham, C. McHugh, and J. M Cooper (2002) SERRS: In situ substrate formation and improved detection using microfluidics. Anal. Chem. 74(7), 1503–1508.

    Google Scholar 

  13. C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne (2002) Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing. J. Phys. Chem. B 106, 1898–1902.

    Google Scholar 

  14. F. Hua, T. Cui, and Y. Lvov (2002) Lithographic approach to apttern self-assembled nanoparticle multilayers. Langmuir 18, 6712–6715.

    Google Scholar 

  15. V. Fleury, W. A. Watters, L. Allam, and T. Devers (2002) Rapid electroplating of insulators. Nature 416, 716–719.

    Google Scholar 

  16. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Letts. 26(2), 163–166.

    Google Scholar 

  17. E. Roth, G. A. Hope, D. P. Schweinsberg, W. Kiefer, and P. M. Fredericks, (1993) Simple technique for measuring surface-enhanced fourier transform Raman spectra of organic compounds. Appl. Spec. 47(11), 1794–1800.

    Google Scholar 

  18. C. D. Geddes, A. Parfenov, D. Roll, I. Gryczynski, J. Malicka, and J. R. Lakowicz, (2003) Roughened silver electrodes for use in metal-enhanced fluorescence. Photochem. Photobiol. Submitted.

  19. A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. Jn. Phys. Chem. B In Press.

  20. A. M. Michaels, J. Jiang, and L. Brus, (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B. 104, 11965–11971.

    Google Scholar 

  21. A. M. Michaels, M. Nirmal, and L. E. Brus (1999) Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939.

    Google Scholar 

  22. J. R. Lakowicz, J. Malika, S. D'Auria, and I. Gryczynski (2002) Release of self-quenching of fluorescence near metallic surfaces. Anal. Biochem. In Press.

  23. K. Sokolov, G. Chumanov, and T. M. Cotton (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal. Chem. 70, 3898–3905.

    Google Scholar 

  24. J. P. Abid, A. W. Wark, P. F. Brevet, and H. H. Girault (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem. Commun. 7, 792–793.

    Google Scholar 

  25. E. J. Bjerneld, K. V. G. K. Mutry, J. Prikulis, and M. Kall (2002) Laser-induced growth of Ag nanoparticles from aqueous solutions. Chem. Phys. Chem. 116–119.

  26. I. Pastoriza-Santos, C. Serra-Rodriguez, and L. M. Liz-Marzan (2000) Self-assembly of silver particle monolayers on glass from Ag+ solutions in DMF. J. Colloid Interface Sci. 221, 236–241.

    Google Scholar 

  27. L. A. Porter, H. C. Choi, A. E. Ribbe, and J. M. Buriak (2002) Controlled electroless deposition of noble metal nanoparticles films on germanium surfaces. Nano. Lett. 2(10), 1067–1071.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Lakowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geddes, C.D., Parfenov, A., Roll, D. et al. Silver Fractal-Like Structures for Metal-Enhanced Fluorescence: Enhanced Fluorescence Intensities and Increased Probe Photostabilities. Journal of Fluorescence 13, 267–276 (2003). https://doi.org/10.1023/A:1025046101335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025046101335

Navigation