Skip to main content
Log in

Copper Cofire X7R Dielectrics and Multilayer Capacitors Based on Zinc Borate Fluxed Barium Titanate Ceramic

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Copper cofired dielectrics may give new opportunities for high temperature capacitors. To demonstrate feasibility, BaTiO3 has been formulated into X7R dielectrics with copper inner electrodes. This requires the development of a formulation that permits sintering at temperatures below 1000°C, and then firing in a reducing environment in atmospheres pO2 ∼ 10−8 atms. ZnO—B2O3 chemistries were explored with additional dopants to modify densification and the temperature coefficient of capacitance of the BaTiO3 dielectric anomaly. X7R characteristics with relative dielectric permittivities ∼2750 and tanδ ∼ 0.01 at 1 kHz were obtained at room temperature. Multilayer capacitors were fabricated in 3.2 mm × 1.6 mm size multilayers with an acrylic binder system and oxidation resistive copper inner electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Sakabe, Am. Ceram. Soc. Bull., 66, 1338 (1987).

    Google Scholar 

  2. C.A. Randall, J. Ceram. Soc. Jpn, 109, S2 (2001).

    Google Scholar 

  3. B.S. Rawal, M. Kahn, and W.R. Buessem, in Grain Boundary Phenomena in Electronic Ceramics, edited by L.M. Levinson (The American Ceramics Society, Westerville, OH, 1981), vol. 1, p. 172.

    Google Scholar 

  4. S. Sato, Y. Nakano, A. Sato, and T. Nomura, J. Euro. Ceram. Soc., 19, 1061 (1999).

    Google Scholar 

  5. H. Chazono and H. Kishi, Jpn. J. Appl. Phys., 40, 5624 (2001).

    Google Scholar 

  6. Y. Tsur and C.A. Randall, in Fundamental Physics of Ferroelectrics 2000, edited R.E. Cohen (AIP Conference Proceedings, 2000), p. 535.

  7. R. Waser and R. Hagenbeck, Acta Mater., 48, 797 (2000).

    Google Scholar 

  8. S. Sumita, M. Ikeda, Y. Nakano, K. Nishiyama, and T. Nomura, J. Am. Ceram. Soc., 74, 273 (1991).

    Google Scholar 

  9. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), p. 101.

    Google Scholar 

  10. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, and S.-E. Park, Jpn. J. Appl. Phys., 40, 5999 (2001).

    Google Scholar 

  11. J. Kato, Y. Yokotani, H. Kagata, and H. Niwa, Jpn. J. Appl. Phys., 26(suppl. 26-2), 90 (1987).

    Google Scholar 

  12. F. Uchikoba, S. Sato, K. Hirakata, Y. Kosaka, and K. Sawamura, in Dielectric Ceramics: Processing, Properties, and Applications, edited by K.M. Nair, J.P. Guha, and A. Okamoto (American Ceramic Society, San Francisco, CA, 1993), vol. 32, p. 101.

    Google Scholar 

  13. I. Burn, U.S. Pat. No. 4845062 (1989).

  14. H. Mandai, Y. Sakabe, and J.P. Canner, in Materials and Processes for Microelectronic Systems, edited by K.M. Nair, R. Pohanka, and R.C. Buchanan (American Ceramic Society, Westerville, OH, 1990), vol. 15, p. 313.

    Google Scholar 

  15. H. Mandai and S. Okubo, in Dielectric Ceramics: Processing, Properties, and Applications, edited by K.M. Nair, J.P. Guha, and A. Okamoto (American Ceramic Society, San Francisco, CA, 1993), vol. 32, p. 91.

    Google Scholar 

  16. W. Borland and J.J. Felten, in Proceedings of 34th International Symposium on Microelectronics (IMAPS, Oct. 9–11th, Baltimore, MD, 2001), p. 452.

  17. N. Omori, H. Sano, Y. Kohno, and Y. Sakabe, U.S. Pat. No. 5036425 (1991).

  18. H. Sano, N. Omori, Y. Kohno, and Y. Sakabe, U.S. Pat. No. 5117326 (1992).

  19. N. Sakamoto, T. Motoki, and H. Sano, U.S. Pat. No. 6233134 (2001).

  20. I. Burn, in Proceeding of 34th International Symposium on Microelectronics (IMAPS, Oct. 9–11th, Baltimore, MD, 2001), p. 473.

  21. I. Burn, J. Mater. Sci., 17, 1398 (1982).

    Google Scholar 

  22. J.F. Fernández, A.C. Caballero, P. Durán, and C. Moure, J. Mater. Sci., 31, 975 (1996).

    Google Scholar 

  23. L. Sheppard, Am. Ceram. Soc. Bull., 72 45 (1993).

    Google Scholar 

  24. S.A. Bruno and D.K. Swanson, J. Am. Ceram. Soc., 76, 1233 (1993).

    Google Scholar 

  25. D.E. Harrison and F.A. Hummel, J. Electrochem. Soc., 103, 491 (1956).

    Google Scholar 

  26. C.A. Randall, S.F. Wang, D. Laubscher, J.P. Dougherty, and W. Huebner, J. Mater. Res., 8, 871 (1993).

    Google Scholar 

  27. B.E. Vugmeister and M.D. Glinchuk, Reviews of Modern Physics, 62, 993 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, TH., Randall, C.A. Copper Cofire X7R Dielectrics and Multilayer Capacitors Based on Zinc Borate Fluxed Barium Titanate Ceramic. Journal of Electroceramics 10, 39–46 (2003). https://doi.org/10.1023/A:1024028024779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024028024779

Navigation