Skip to main content
Log in

Solar quadrupole moment and purely relativistic gravitation contributions to Mercury's perihelion advance

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The perihelion advance of the orbit of Mercury has long been one of the observational cornerstones for testing General Relativity (G.R.).The main goal of this paper is to discuss how, presently, observational and theoretical constraints may challenge Einstein's theory of gravitation characterized by β=γ=1. To achieve this purpose, we will first recall the experimental constraints upon the Eddington-Robertson parameters γ,β and the observational bounds for the perihelion advance of Mercury, Δωobs. A second point will address the values given, up to now, to the solar quadrupole moment by several authors. Then, we will briefly comment why we use a recent theoretical determination of the solar quadrupole moment, J 2=(2.0 ± 0.4) 10-7, which takes into account both surfacic and internal differential rotation, in order to compute the solar contribution to Mercury's perihelion advance. Further on, combining bounds on γ and J 2 contributions, and taking into account the observational data range for Δωobs,we will be able to give a range of values for β. Alternatively, taking into account the observed value of Δωobs, one can deduce a dynamical estimation of J 2 in the setting of G.R. This point is important as it provides a solar model independent estimation that can be confronted with other determinations of J 2 based upon solar theory and solar observations (oscillation data, oblateness...). Finally, a glimpse at future satellite experiments will help us to understand how stronger constraints upon the parameter space (γω J 2) as well as a separation of the two contributions (from the quadrupole moment, J 2, or purely relativistic, 2α2+2αγ–β) might be expected in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C.: 2000, in: A.N. Cox (ed.), W. Astrophysical Quantities, Springer.

  • Ambronn, L. and Schur, W.: 1905, Astron. Mitt. d. Klg. Stw. zu Göttingen 76, 603.

    Google Scholar 

  • Anderson, J.D., Keesey, M.S.W., Lau, E.L., Standish, E.M. Jr. and Newhall, X.X.: 1978, Tests of General Relativity using Astrometric and Radiometric Observations of the Planets, 3rd Int. Space Relativity Symposium, XXVIIth Int. Astronautical Congress, Anaheim, CA, U.S.A., 1976. Acta Astronautica 5, 43–61.

  • Anderson, J.D., Colombo, G., Espsotio, P.B., Lau, E.L. and Trager, G.B.: 1987, The mass, gravity field, and ephemeris of Mercury, Icarus 71, 337–349.

    Article  ADS  Google Scholar 

  • Anderson, J.D., et al.: 1991, Radar and spacecraft ranging to Mercury between 1966 and 1988, I.A.U. Proceedings 9, 324.

    Google Scholar 

  • Anderson, J.D., Campbell, J.K., Jurgens, R.F., Lau, E.L., Newhall, X.X., Slade III, M.A. and Standish, E.M. Jr: 1992, Recent developments in Solar-System tests of general relativity, in: Sato, H. and Nakamura, T. (eds.), Proceedings of the 6th Marcel Grossmann Meeting on General Relativity, World Scientific, Singapore, pp. 353–355.

    Google Scholar 

  • Bec-Borsenberger, et al.: 2001, Astrodynamical Space Test of Relativity using Optical Devices -ASTROD, A Proposal submitted to ESA in response to ‘Call forMission Proposals for two Flexi-Missions F2/F3’ availlable on http://gravity5.phys.nthu.edu.tw/webpage/proposals.html

  • Bertotti, B. and Giampieri, G.: 1998, Solar coronal plasma in doppler measurements, Solar Phys. 178, 85.

    Article  ADS  Google Scholar 

  • BepiColombo. An Interdisciplinary Cornerstone Mission to the Planet Mercury, System and Technology Study Report, ESA-SCI (2000)1, p. 21–24 and 35–38, 2000.

  • Bretagnon, P.: 1982a, Constantes d'intégration et éléments moyens pour l'ensemble des planètes, Astron. Astrophys. 108, 69.

    ADS  Google Scholar 

  • Bretagnon, P.: 1982b, Théorie du mouvement de l'ensemble des planètes. Solution VSOP82, Astron. Astrophys. 114, 278.

    MATH  ADS  Google Scholar 

  • Bretagnon, P. and Chapront, J.: 1981, Notes sur les formules pour le calcul de la précession, Astron. Astrophys. 103, 103–107.

    MATH  ADS  Google Scholar 

  • Brown, T.M., Christensen-Dalsgaad, J., Dziembowski, W.A., Goode, P., Gough, D.O. and Morrow, C.A.: 1989, Inferring the Sun's internal angular velocity from observed p-modes frequency splittings, Astrophys. J. 343, 526–546.

    Article  ADS  Google Scholar 

  • Bursa, M.: 1986, The Sun's flattening and its influence on planetary orbits, Bull. Astron. Inst. Cze. 37(5), 312–313.

    ADS  Google Scholar 

  • Bureau des Longitudes: 1989, Annuaire du Bureau des Longitudes et Ephémérides Astronomiques, Masson (since 1889).

  • Campbell, L., McDow, J.C., Moffat, J.W. and Vincent, D.: 1983, The Sun's quadrupole moment and the perihelion precession of Mercury, Nature 305, 508–510.

    Article  ADS  Google Scholar 

  • Clemence, G.M.: 1943, The Motion of Mercury 1765–1937, Astron. Papers prepared for use of the Am. Ephem. and Nautic. Alman., 11, part. 1, U.S. Government Printing Office, Washington D.C.

    Google Scholar 

  • Clemence, G.M.: 1947, The relativity effect in planetary motions, Rev. Mod. Phys. 19, 361–364.

    Article  ADS  Google Scholar 

  • Damé, L., Cugnet, D., Hersé, M., Crommelynck, D., Dewitte, S., Joukoff, A., Ruedi, I., Schmutz, W., Wehrli, C., Delmas, C., Laclare, F. and Rozelot, J.P.: 2000, Picard: Solar Diameter, Irradiance and Climate, Proc. 1st Sol. and Space Weather Conf., Santa Cruz, Tenerife, Spain, ESA-SP-463, p. 223–229.

  • Delache, P.: 1994, Private communication.

  • Dicke, R.H.: 1965, Icarus and relativity, Astron. J. 70, 6.

    Article  Google Scholar 

  • Dicke, R.H.: 1976, Evidence of a solar distortion rotating with a period of 12.2 days, Solar Phys. 47, 475–515.

    Article  ADS  Google Scholar 

  • Dicke, R.H., Kuhn, J.R. and Libbrecht, K.G.: 1985, Oblateness of the Sun in 1983 and relativity, Nature 316, 687–690.

    Article  ADS  Google Scholar 

  • Dicke, R.H., Kuhn, J.R. and Libbrecht, K.G.: 1986, The variable oblateness of the Sun: measurements of 1984, Astrophys. J. 311, 1025–1030.

    Article  ADS  Google Scholar 

  • Dicke, R.H., Kuhn, J.R. and Libbrecht, K.G.: 1987, Is the solar oblateness variable? Measurements of 1985, Astrophys. J. 318, 451–458.

    Article  ADS  Google Scholar 

  • Dicke, R.H. and Goldenberg, H.M.: 1967, Solar oblateness and general relativity, Phys. Rev. Lett. 18(9), 313.

    Article  ADS  Google Scholar 

  • Dicke, R.H. and Goldenberg, H.M.: 1974, The oblateness of the Sun, Astrophys. J. Suppl. 241(27), 131–182.

    Article  ADS  Google Scholar 

  • Doolittle, E.: 1925, The secular variations of the elements of the orbits of the four inner planets computed for the epoch 1850.0 GMT, Trans. Am. Phil. So. 20(37), article 2.

  • Duncombe, R.L.: 1958, Mercury (Planet), Astron. Papers prepared for use of the Am. Ephem. and Nautic. Alman., 16, part. 1, p. 51, U.S. Government Printing Office, Washington D.C.

    Google Scholar 

  • Duvall, T.L. Jr, Dziembowski, W.A., Goode, P.R., Gough, D.O., Harvey, J.W. and Leibacher, J.W.: 1984, Internal rotation of the Sun, Nature 310, 22–25.

    Article  ADS  Google Scholar 

  • Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P., Miller, B.A., New, R., Wheeler, S.J. and Gough, D.O.: 1995, Slow rotation of the Sun's interior, Nature 376, 669–672.

    Article  ADS  Google Scholar 

  • Review of Particle Physics: 2000, The European Physical Journal C 15, 1–4.

  • Fitch, V.L. et al.: 1995, Review of Gravity Probe B, Space Studies Board, Board on Physics and Astronomy, National Research Council, Washington D.C., National academy. Available on http://www.nas.edu/ssb/gpbmenu.html

    Google Scholar 

  • GAIA Science Advisory Group: 2000, GAIA: Composition, Formation and Evolution of the Galaxy. Results of the Concept and Technology Study, Draft version available on http://astro.estec.esa.nl/GAIA as march-report.pdf, version 1.6.

  • Godier, S. and Rozelot, J.P.: 1999a, Quadrupole moment of the Sun. Gravitational and Rotational Potentials, Astron. Astrophys. 350, 310–317.

    ADS  Google Scholar 

  • Godier, S. and Rozelot, J.P.: 1999b, Relationship between the quadrupole moment and the internal layers of the Sun, Proc. 9th Europ. Meet. on Sol. Phys.: Magnetic Fields and Solar Processes, Florence, Italy, 12–18 Sept. 1999 (ESA SP-448, Dec. 1999).

  • Godier, S. and Rozelot, J.P.: 2000, The solar oblateness and its relationship with the structure of the tachocline and of the Sun's subsurface, Astron. Astrophys. 355, 365–374.

    ADS  Google Scholar 

  • Goldreich, P. and Schubert, G.: 1968, A theoretical upper bound to the solar oblateness, Astrophys. J. 154, 1005–1009.

    Article  ADS  Google Scholar 

  • Gough, D.O.: 1982, Internal rotation and gravitational quadrupole moment of the Sun, Nature 298, 334–339.

    Article  ADS  Google Scholar 

  • Hill, H.A., Clayton, P.D., Patz, D.L., Healy, A.W., Stebbins, R.T., Oleson, J.R. and Zanoni, C.A.: 1974, Solar oblateness, excess brightness and relativity, Phys. Rev. Let. 33(25), 1497–1500.

    Article  ADS  Google Scholar 

  • Hill, H.A., Bos, R.J. and Goode, P.R.: 1975, Preliminary determination of the Sun's gravitational quadrupole moment from rotational splitting of global oscillations and its relevance to test General Relativity, Phys. Rev. Lett. 49(24), 1794–1797.

    Article  ADS  Google Scholar 

  • Hill, H.A. and Stebbins, R.T.: 1975, The intrinsic visual oblateness of the Sun, Astrophys. J. 200, 471–483.

    Article  ADS  Google Scholar 

  • Iess, L., Giampieri, G., Anderson, J.D. and Bertotti, B.: 1999, Doppler measurement of the solar gravitational deflection, Class. Quantum Grav. 16, 1487.

    Article  ADS  Google Scholar 

  • Kislik, M.D.: 1983, On the solar oblateness, Sov. Astron. Lett. 9, 5.

    Google Scholar 

  • Kuhn, J.R.: 1998, Private communication.

  • Kuhn, J.R.: 2001, Private Oral Communication at the Intern. Solar Cycle Studies workshop, Longmont, Colorado, USA, June 13th-16th (2001).

  • Kuhn, J.R., Bush, R.I., Scheick, X. and Scherres, P.: 1998, The Sun's shape and brightness, Nature 392, 155–157.

    Article  ADS  Google Scholar 

  • Krasinsky, G.A., Aleshkina, E.Yu., Pitjeva, E.V. and Sveshnikov, M.L.: 1986, Relativistic effects from planetary and lunar observations of the XVIII and XX centuries, I.A.U. Symposium 114, Leningrad, p. 315–328.

  • Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L. and Chunayeva, L.I.: 1993, The motion of major planets from observations 1769–1988 and some astronomical constants, Celest. Mech. and Dyn. Astron. 55, 1–23.

    Article  ADS  Google Scholar 

  • Landgraf, W.: 1992, An estimation of the oblateness of the Sun from the motion of Icarus, Solar Phys. 142, 403–406.

    Article  ADS  Google Scholar 

  • Lebach, D.E., Corey, B.E., Shapiro, I.I., Ratner, M.I., Webber, J.C., Rogers, A.E.E., Davis, J.L. and Herring, T.A.: 1995, Measurement of the solar gravitational deflection of radio waves using Very-Long-Baseline Interferometry, Phys. Rev. Let. 75, 1439–1442.

    Article  ADS  Google Scholar 

  • Lestrade, J.F. and Bretagnon, P.: 1982, Perturbations relativistes pour l'ensemble des planètes, Astron. Astrophys. 105, 42.

    MATH  ADS  Google Scholar 

  • Lieske, J.H., Lederle, T., Fricke, W. and Morando, B.: 1977, Expressions for the precession quantities based upon the I.A.U. (1976) system of astronomical constants, Astron. Astrophys. 58, 1–1.

    ADS  Google Scholar 

  • Lieske, J.H. and Null, G.W.: 1969, Icarus and the determination of astronomical constants, Astron. J. 74(2), 297–30.

    Article  ADS  Google Scholar 

  • Lydon, T.J. and Sofia, S.: 1996, A measurement of the shape of the solar disk: the quadrupole moment, the solar octopole moment, and the advance of the perihelion of the planet Mercury, Phys. Rev. Lett. 76, 177–179.

    Article  ADS  Google Scholar 

  • Maier, E., Twigg, L. and Sofia, S.: 1992, Preliminary results of a balloon flight of the Solar Disk Sextant, Astrophys. J. 389, 447–452.

    Article  ADS  Google Scholar 

  • Morrison, L.V. and Ward, C.G.: 1975, An analysis of the transits of Mercury: 1677–1973, MNRAS 173, 183–206.

    ADS  Google Scholar 

  • Narlikar, J.V. and Rana, N.C.: 1985, Newtonian N-body calculations of the advance of Mercury's perihelion, MNRAS 213, 657–663.

    MATH  MathSciNet  ADS  Google Scholar 

  • Newcomb, S.: 1895–1898, Tables of Mercury, Astr. Pap. Am. Ephem. 6, part 2, Washington.

  • Nobili, A.M. and Will, C.M.: 1986, The real value of Mercury's perihelion advance, Nature 320, 39–41.

    Article  ADS  Google Scholar 

  • Paternò, L., Sofia, S. and Di Mauro, M.P.: 1996, The rotation of the Sun's core, Astron. Astrophys. 314, 940–946.

    ADS  Google Scholar 

  • Pijpers, F.P.: 1998, Helioseismic determination of the solar gravitational quadrupole moment, MNRAS 297, L76-L80.

    Article  ADS  Google Scholar 

  • Pitjeva, E.V.: 1993, Experimental testing of relativistic effects, variability of the gravitational constant and topography of Mercury surface from radar observations 1964–1989, Celest. Mech. and Dyn. Astron. 55, 313–321.

    Article  ADS  Google Scholar 

  • Pitjeva, E.V.: 2001, Private communication.

  • Pitjeva, E.V.: 2001, Modern numerical ephemerides of planets and the importance of ranging observations for their creation. To be published in Celest. Mech. and Dyn. Astron. Can be found on http://ssd.jpl.nasa.gov/iau-comm4/

  • Rana, N.C.: 1987, An investigation of the motions of the node and perihelion of Mercury, Astron. Astrophys. 181, 195–202.

    ADS  Google Scholar 

  • Reinhard, R.: 1999, Ten Years of Fundamental Physics in ESA's Space Science Programme, ESA Bulletin 98 June (1999).

  • Robertson, D.S., Carter, W.E. and Dillinger, W.H.: 1991, A New Measurement of the Solar Gravitational Deflection of Radio Signals using V.L.B.I., Proceedings of the A.G.U. Chapman Conf. ‘Geodetic V.L.B.I.: Monitoring Global Change,’ Washington, April 1991, 22–26, p. 203–212.

  • Rozelot, J.-P.: 1996, Measurement of the Sun's changing sizes, in: Missions to the Sun, SPIE Proc. Denver, Colorado (USA), 8–9 August 1996. D. Rust Editions, vol. 2804, p. 241.

    Google Scholar 

  • Rozelot, J.P.: 2001, Possible links between the solar radius variations and the Earth's climate evolution over the past four centuries, J. Atmosph. Sol. Terr. Phys. 63, 375–386.

    Article  ADS  Google Scholar 

  • Rozelot, J.P. and Godier, S.: 2000, in: Damé L. and Marsch, E. (eds.), Accurate Determination of the Successive Moments of the Sun: A New Window Open on the Sun's Interior, COSPAR meeting, Symposium E2.4, 16–23, July 2000, to be published in Advances in Space Research.

  • Rozelot, J.P., Godier, S. and Lefèbvre, S.: 2001, On the theory of the oblateness of the Sun, Solar Phys. 198, 223–240.

    Article  ADS  Google Scholar 

  • Rozelot, J.P. and Bois, E.: 1998, New Results Concerning the Solar Oblateness, Proc. of the 19th Nat. Sol. Obs., Sacramento Peak SummerWorkshop, New Mexico, Sept. 1997. in: Balasubramaniam, K.S., Harvey, J. and Rabin, D. (eds.), Synoptic Solar Physics, J.A.S.P. Conference Series, 140(7), 5.

  • Rozelot, J.P. and Rösch, J.: 1996, Le Soleil change-t-il de forme? J.C.R. Ac. Sc. Paris 322(IIb), 637–644.

    Google Scholar 

  • Rozelot, J.P. and Rösch, J.: 1997, An upper bound to the solar oblateness, Solar Phys. 172, 11–18.

    Article  ADS  Google Scholar 

  • Rösch, J., Rozelot, J.P., Deslandes, H. and Desnoux, V.: 1996, A new estimate of the quadrupole moment of the Sun, Solar Phys. 165, 1–11.

    Article  ADS  Google Scholar 

  • Roxburgh, I.W.: 2000, Gravitational multipole moment of the Sun, Private communication.

  • Shapiro, I.I.: 1965, Solar rotation and planetary orbits, Icarus 4, 549–550.

    Article  ADS  Google Scholar 

  • Shapiro, I.I., Ash, M.E. and Smith, W.B.: 1968, Icarus: further confirmation of the relativistic perihelion precession, Phys. Rev. Lett. 20(26), 1517–1518.

    Article  ADS  Google Scholar 

  • Shapiro, I.I., Smith, W.B., Ash, M.E. and Herrick, S.: 1971, General Relativity and the orbit of Icarus, Astron. J. 76(7), 588–606.

    Article  ADS  Google Scholar 

  • Shapiro, I.I., Pettengill, G.H., Ash, M.E., Ingalls, R.P., Campbell, D.B. and Dyce, R.B.: 1972, Mercury's perihelion advance: determination by radar, Phys. Rev. Lett. 28, 24.

    Article  Google Scholar 

  • Shapiro, I.I., Counselman, C.C. III and King, R.W.: 1976, Verification of the principle of equivalence for massive bodies, Phys. Rev. Let. 36, 555–558.

    Article  ADS  Google Scholar 

  • Sofia, S., O'Keefe, J., Lesh, J.R. and Endal, A.S.: 1979, Solar constant: constraints on possible variations derived from solar diameter measurements, Science 204, 1306–1308.

    ADS  Google Scholar 

  • Sofia, S., Heaps,W. and Twigg, L.W.: 1994, The solar diameter and oblateness measured by the Solar Disk Sextant on the 1992 September 30 balloon flight, Astrophys. J. 427, 1048–1052.

    Article  ADS  Google Scholar 

  • Standish, M.: 2000, Private communication.

  • Toboul, P., Foulon, B., Lafargue, L. and Metris, G.: 2000, The Microscope mission, 51st International Astronautical Congress 2000, Brazil, published by the I.A.F.

  • Turyshev, S.G., Anderson, J.D. and Hellings, R.W.: 1996, Relativistic gravity theory and related tests with a Mercury Orbiter mission, gr-qc/9606028.

  • Ulrich, R.K. and Hawkins, G.W.: 1981, The solar gravitational figure - J 2 and J 4 -, Astrophys. J. 246, 985–988, and erratum, Astrophys. J. 249, 831.

    Article  ADS  Google Scholar 

  • Wayman, P.A.: 1966, Determination of the inertial frame of reference, Quart. Jour. R. Astron. Soc. 7, 138–156.

    ADS  Google Scholar 

  • Will, C.M.: 1993, Theory and Experiment in Gravitational Physics, Revised edition. Cambridge University Press.

  • Will, C.M.: 2001, The Confrontation between General Relativity and Experiment, www.livingreviews.org/Articles/Volume4/2001–4will

  • Williams, J.G., Boggs, D.H., Dickey, J.O. and Folkner, W.M.: 2001, Lunar Laser tests of gravitational physics, to be published in World Scientific.

  • Wittmann, A.D. and Débarbat, S.: 1987, The Solar Diameter and its Variability, in Gram, L.E. and Thomas, J.H. (eds.), Workshop on the Physics of Sunspots, Sacramento Peak Observatory, National Solar Observatory, p. 424–433.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pireaux, S., Rozelot, JP. Solar quadrupole moment and purely relativistic gravitation contributions to Mercury's perihelion advance. Astrophysics and Space Science 284, 1159–1194 (2003). https://doi.org/10.1023/A:1023673227013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023673227013

Navigation