Skip to main content
Log in

Human Jejunal Permeability of Cyclosporin A: Influence of Surfactants on P-Glycoprotein Efflux in Caco-2 Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this work was to determine the jejunal permeability of cyclosporin A (CsA) in humans and whether formulation variables modulate the effects of P-glycoprotein (P-gp) on the permeability of CsA in Caco-2 cells.

Methods. A solution containing CsA, phenylalanine, propranolol, polyethyleneglycol (PEG) 400, and PEG 4000 was perfused through a 10-cm jejunal segment in 12 subjects. Caco-2 transport studies were performed using previously reported methodology.

Results. The mean P eff (±SD) of CsA in humans was 1.65 (0.53). The mean permeabilities for phenylalanine, propranolol, and PEG 400 were 4.54 (2.39), 2.90 (1.28), and 0.83 (0.51) × 10-4 cm/s, respectively. The presence of surfactants significantly decreased the permeabilities of CsA in both directions in Caco-2 cells.

Conclusions. The results suggest that the effects of surfactants via micellar solubilization and inhibition of P-gp efflux on CsA transport in Caco-2 cells are significant. CsA can rightly be classified as a low solubility-high permeability Class II BCS drug and its highly variable absorption from Sandimmune® oral formulations is the result of poor dissolution characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Ismailos, C. Reppas, J. B. Dressman, and P. Macheras. Unusual solubility behaviour of cyclosporin A in aqueous media. J. Pharm. Pharmacol. 43:287-289 (1991).

    Google Scholar 

  2. J. Grevel, E. Nuesch, E. Abisch, and K. Kutz. Pharmacokinetics of oral cyclosporin A (Sandimmun) in healthy subjects. Eur. J. Clin. Pharmacol. 31:211-216 (1986).

    Google Scholar 

  3. S. K. Gupta and L. Z. Benet. Absorption kinetics of cyclosporine in healthy volunteers. Biopharm. Drug Dispos. 10:591-596 (1989).

    Google Scholar 

  4. A. Lindholm, S. Henricsson, M. Lind, and R. Dahlqvist. Intraindividual variability in the relative systemic availability of cyclosporin after oral dosing. Eur. J. Clin. Pharmacol. 34:461-464 (1988).

    Google Scholar 

  5. U. Christians and K. F. Sewing. Cyclosporin metabolism in transplant patients. Pharmacol. Ther. 57:291-345 (1993).

    Google Scholar 

  6. P. B. Watkins. Noninvasive tests of CYP3A enzymes. Pharmacogenetics 4:171-184 (1994).

    Google Scholar 

  7. J. H. Charuk, P. Y. Wong, and R. A. Reithmeier. Differential interaction of human renal P-glycoprotein with various metabolites and analogues of cyclosporin A. Am. J. Physiol. 269:F31-F39 (1995).

    Google Scholar 

  8. M. Lemaire, A. Fahr, and G. Maurer. Pharmacokinetics of cyclosporine: inter-and intra-individual variations and metabolic pathways. Transplant. Proc. 22:1110-1112 (1990).

    Google Scholar 

  9. A. Lindholm, M. Welsh, C. Alton, and B. D. Kahan. Demographic factors influencing cyclosporine pharmacokinetic parameters in patients with uremia: racial differences in bioavailability. Clin. Pharmacol. Ther. 52:359-371 (1992).

    Google Scholar 

  10. J. Drewe, C. Beglinger, and T. Kissel. The absorption site of cyclosporin in the human gastrointestinal tract. Br. J. Clin. Pharmacol. 33:39-43 (1992).

    Google Scholar 

  11. N. Takamatsu, L. S. Welage, N. M. Idkaidek, D.-Y. Liu, P. I.-D. Lee, Y. Hayashi, J. K. Rhie, H. Lennernas, J. L. Barnett, V. P. Shah, L. Lesko, and G. L. Amidon. Human intestinal permeability of piroxicam, propranolol, phenylalanine and PEG 400 determined by jejunal perfusion. Pharm. Res. 14:1127-1132 (1997).

    Google Scholar 

  12. N. Takamatsu, O.-N. Kim, L. S. Welage, N. M. Idkaidek, Y. Hayashi, J. L. Barnett, R. Yamomoto, E. Lipka, H. Lennernas, A. Hussain, L. Lesko, and G. L. Amidon. Human jejunal permeability of two polar drugs: Cimetidine and ranitidine. Pharm. Res. 18:742-744 (2001).

    Google Scholar 

  13. I. M. Menzies. Transmucosal passage of inert molecules in health and disease. In E. Skadhauge and K. Heintze (eds.), Intestinal Absorption and Secretion, MTP Press, Lancaster, Pennsylvania, 1983 pp. 527-543.

    Google Scholar 

  14. B. G. Munck. Intestinal absorption of amino acids. In L. F. Johnson (ed.), Physiology of the Gastrointestinal Tract, Raven Press, New York, 1981 pp. 1097-1122.

    Google Scholar 

  15. C. Hilgendorf, H. Spahn-Langguth, C. G. Regardh, E. Lipka, G. L. Amidon, and P. Langguth. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: Permeabilities via diffusion, inside-and outside-directed carrier-mediated transport. J. Pharm. Sci. 89:63-75 (2000).

    Google Scholar 

  16. X.-Y. Chu, G. P. Sanchez-Castano, K. Higaki, D.-M. Oh, C.-P. Hsu, and G. L. Amidon. Correlation between epithelial cell permeability of cephalexin and expression of intestinal oligopeptide transporter. J. Pharmacol. Exp. Ther. 299:575-582 (2001).

    Google Scholar 

  17. W. M. Awni and J. A. Maloney. Optimized high-performance liquid chromatographic method for the analysis of cyclosporine and three of its metabolites in blood and urine. J. Chromatogr. 425:233-236 (1998).

    Google Scholar 

  18. A. A. al-Angary, Y. M. el-Sayed, M. A. al-Meshal, M. M. al-Dardiri, and G. M. Mahrous. A sensitive high-performance liquid chromatographic analysis of propranolol in serum. J. Clin. Pharm. Ther. 16:93-101 (1991).

    Google Scholar 

  19. M. M. Nerurkar, P. S. Burton, and R. T. Borchardt. The use of surfactants to enhance permeability of peptides through Caco-2 cells by inhibition of apically polarized efflux system. Pharm. Res. 13:528-534 (1996).

    Google Scholar 

  20. M. M. Nerurkar, N. F. H. Ho, P. S. Burton, T. J. Vidmar, and R. T. Borchardt. Mechanistic roles of neutral surfactants on cocurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J. Pharm. Sci. 86:813-821 (1997).

    Google Scholar 

  21. F. Ingels, S. Deferme, E. Destexhe, M. Oth, G. Van den Mooter, and P. Augustijns. Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. Int. J. Pharm. 232:183-192 (2002).

    Google Scholar 

  22. E. V. Batrakova, H.-Y. Han, V. Y. Alakhov, D. W. Miller, and A. V. Kabanov. Effects of Pluronic block copolymers on drug absorption in Caco-2 cell monolayers. Pharm. Res. 15:850-855 (1998).

    Google Scholar 

  23. I. Knemeyer, M. G. Wientjes, and J. L.-S. Au. Cremophor reduces paclitaxel penetration into bladder wall during intravesical treatment. Cancer Chemother. Pharmacol. 44:241-248 (1999).

    Google Scholar 

  24. S. Tamura, A. Ohike, R. Ibuki, G. L. Amidon, and S. Yamashita. Tacrolimus is a Class II low solubility-high permeability drug: The effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats. J. Pharm. Sci. 91:719-729 (2002).

    Google Scholar 

  25. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413-420 (1995).

    Google Scholar 

  26. S. K. Gupta, R. C. Manfro, S. J. Tomlanovich, J. G. Gambertoglio, M. R. Garovoy, and L. Z. Benet. Effect of food on the pharmacokinetics of cyclosporine in healthy subjects following oral and intravenous administration. J. Clin. Pharmacol. 30:643-653 (1990).

    Google Scholar 

  27. E. A. Mueller, J. M. Kovarik, J. B. van Bree, W. Tetzloff, J. Grevel, and K. Kutz. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm. Res. 11:301-304 (1994).

    Google Scholar 

  28. E. A. Mueller, D. Niese, and B. Mellein. Cyclosporine microemulsion formulation (Neoral) in transplantation: Pharmacokinetic/pharmacodynamic relationships. Transplant Proc. 30:1694-1696 (1998).

    Google Scholar 

  29. Z.-G. Gao, H.-G. Choi, H.-J. Shin, K.-M. Park, S.-J. Lim, K.-J. Hwang, and C.-K. Kim. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int. J. Pharm. 161:75-86 (1998).

    Google Scholar 

  30. J. Guo, Q. Ping, and Y. Chen. Pharmacokinetic behavior of cyclosporin A in rabbits by oral administration of lecithin vesicle and sandimmun neoral. Int. J. Pharm. 216:17-21 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Amidon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, YY., Higaki, K., Neudeck, B.L. et al. Human Jejunal Permeability of Cyclosporin A: Influence of Surfactants on P-Glycoprotein Efflux in Caco-2 Cells. Pharm Res 20, 749–756 (2003). https://doi.org/10.1023/A:1023481418576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023481418576

Navigation