Skip to main content
Log in

phoR1, a gene encoding a new histidine protein kinase in Myxococcus xanthus

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A soil bacterium able to undergo multicellular development and a coordinated gliding in swarms, requires an accurate regulatory network of phosphorelay proteins. Inorganic phosphate is a limiting nutrient in soil and its importance in regulation is critical. As a step towards studying phosphate regulation and its influence in the developmental process in this bacterium, we screened a Myxococcus xanthus library for clones with phosphatase activity, and found four different ones. The deduced sequence of one of the cloned inserts is similar to that of the classic transmembrane histidine protein kinase of the sensor family of the two-component signal transduction systems with a high sequence similarity to the sensor kinase in the Pho regulon of Bacillus subtilis PhoR. This gene has been named phoR1 and its deduced amino acid sequence consists of 455 residues with a predicted molecular mass of 48.5 kDa. The M. xanthus PhoR1 deduced sequence contains all the characteristic histidine protein kinase motifs in the same order and with the same spacing. A hydropathy profile indicates two membrane-spanning segments located at the extreme N-terminus, according to the putative sensor role of this domain. A gene-disrupted mutant is unable to produce normal mature fruiting bodies and produces fewer spores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul S.F. and Lipman D.J. 1990. Protein database searches for multiple alignments. Proc. Natl. Acad. Sci. 87 USA: 5509–5513.

    Article  PubMed  CAS  Google Scholar 

  • Avery L. and Kaiser D. 1983. In situ transposon replacement and isolation of spontaneus tandem duplication. Mol. Gen. Genet. 191: 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Birkey S., Sun G., Piggot P. and Hulett F.M. 1994. A PHO regulon promoter induced under sporulation conditions. Gene 147: 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Bookstein C., Edwards C.W., Kapp N.V. and Hulett F.M. 1990. The Bacillus subtilis 168 alkaline phosphatase III gene: impact of a phoAIII mutation on total alkaline phosphatase synthesis. J. Bacteriol. 172: 3730–3737.

    PubMed  CAS  Google Scholar 

  • Burbulys D., Trach K.A. and Hoch J.A. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545–552.

    Article  PubMed  CAS  Google Scholar 

  • Campos J.M., Geisselsoder J. and Zusman D.R. 1984. Isolation of bacteriophage M × 4, a generalized transducting phage for Myxococcus xanthus. J. Mol. Biol. 119: 167–178.

    Article  Google Scholar 

  • Cho K.Y. and Zusman D.R. 1999. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34: 268–281.

    Article  PubMed  CAS  Google Scholar 

  • Dunmire V., Tatar L.D. and Plamann L. 1999. Genetic suppression analysis of an asgA missense mutation in Myxococcus xanthus. Microbiology-UK 145: 1299–1306.

    Article  CAS  Google Scholar 

  • Eder S., Shi L., Jensen K., Yamane K. and Hulett 1996. A Bacillus subtilis secreted phosphodiesterase / alkaline phosphatase is the product of a Pho regulon gene, phoD. Microbiology 142: 2041–2047.

    PubMed  CAS  Google Scholar 

  • Eymann C., Mach H., Harwood C.R. and Hecker 1996. Phosphatestarvation-inducible proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. Microbiology 142: 3163–3170.

    PubMed  CAS  Google Scholar 

  • Fresch S.C. and Dworkin M. 1996. Tyrosine phosphorylation in Myxococcus xanthus, a multicellular prokaryote. J. Bacteriol 178: 4084–4088.

    Google Scholar 

  • Garza A.G., Pollack J.S., Harris B.Z., Lee A., Keseler I.M., Licking E.F. et al. 1998. SdeK is required for early fruiting body development in Myxococcus xanthus. J. Bacteriol. 180: 4628–4637.

    PubMed  CAS  Google Scholar 

  • Hagen D.C., Betscher A.P. and Kaiser D. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64: 284–296.

    Article  PubMed  CAS  Google Scholar 

  • Hanagan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557–557.

    Google Scholar 

  • Hodgkin J. and Kaiser D. 1979a. Genetics of gliding motility in Myxococcus xanthus(Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171: 167–176.

    Article  Google Scholar 

  • Hodgkin J. and Kaiser D. 1979b. Genetics of gliding motility in Myxococcus xanthus(Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171: 177–191.

    Article  Google Scholar 

  • Hulett F.M., Kim E.E., Bookstein C., Kapp N.V., Edwards C.W. and Wyckoff H.W. 1991. Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J. Biol. Chem. 266: 1077–1084.

    PubMed  CAS  Google Scholar 

  • Inouye M., Inouye S. and Zusman D.R. 1979. Gene expression during development of Myxococcus xanthus: pattern of protein synthesis. Dev. Biol. 68: 579–591.

    Article  PubMed  CAS  Google Scholar 

  • Inouye S. and Inouye M. 1987. Oligonucleotide-directed site-specific mutagenesis using double stranded plasmid DNA. In: Narang S. (ed.), Synthesis and applications of DNA and RNA. Academic Press, Orlando, FL, pp. 181–206.

    Google Scholar 

  • Ireton K., Rudner D.Z., Siranosian K.J. and Grossman A.D. 1993. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factors. Genes Dev. 7: 283–294.

    PubMed  CAS  Google Scholar 

  • Kashefi K. and Hartzell P.L. 1995. Genetic supression and phenotypic masking of a Myxococcus xanthus frzF-defect. Mol. Microbiol. 15: 483–494.

    PubMed  CAS  Google Scholar 

  • Kearnes D.B. and Shimkets L.J. 1998. Chemotaxis in a gliding bacterium. Proc. Natl. Acad. Sci. USA 95: 11957–11962.

    Article  Google Scholar 

  • Kyte J. and Doolittle R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.

    Article  PubMed  CAS  Google Scholar 

  • Lee P.J. and Stock A.M. 1996. Characterization of the genes and proteins of a two-component system from the hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 178: 5579–5585.

    PubMed  CAS  Google Scholar 

  • Lee T.Y., Makino K., Shinagawa H., Amemura M. and Nakata A. 1989. Phosphate regulon in members of the family Enterobacteriaceae: comparison of the phoB-phoR operons of Escherichia coli, Shigella dysenteriae, and Klebsiella pneumoniae. J. Bacteriol. 171: 6593–6599.

    PubMed  CAS  Google Scholar 

  • Lerner C.G. and Inouye M. 1990. Low copy number plasmids for regulated low level expression of cloned genes in Escherichia coli with blue /white insert screening capability. Nucleic Acids Res. 18: 463–463.

    Google Scholar 

  • Liu W., Eder S. and Hulett F.M. 1998. Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J. Bacteriol. 180: 753–758.

    PubMed  CAS  Google Scholar 

  • Liu W. and Hulett F.M. 1998. Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology 144: 1443–1450.

    Article  PubMed  CAS  Google Scholar 

  • Makino K., Shinagawa H., Amemura M. and Nakata A. 1985. Regulation of the phosphate regulon of Escherichia coli K-12: regulation and role of the regulatory gene phoR. J. Mol. Biol. 184: 231–240.

    Article  PubMed  CAS  Google Scholar 

  • Makino K., Shinagawa H., Amemura M. and Nakata A. 1986. Nucleotide sequence of the phoR gene, a regulatory gene for the phosphate regulon of Escherichia coli. J. Mol. Biol. 192: 549–556.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T., Fritsch E.F. and Sambrook J. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Manoil C. and Kaiser D. 1980. Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J. Bacteriol 141: 305–315.

    PubMed  CAS  Google Scholar 

  • Martinez-Canamero M., Ortiz-Codorniu C., Extremera A.L., Munoz-Dorado J. and Arias J.M. 2002. mlpB, a gene encoding a new lipoprotein in Myxococcus xanthus. J. Appl. Bacteriol. 92: 134–139.

    CAS  Google Scholar 

  • Miller J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Ozanne P.G. 1980. Phosphate nutrition of plants-a general treatise. In: Klasswenh E. (ed.), The role of phosphorus in agriculture. American Society of Agronomy, Madison, Wis, pp. 559–585.

    Google Scholar 

  • Plamann L., Li Y., Cantwell B. and Mayor J. 1995. The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J. Bacteriol. 177: 2014–2020.

    PubMed  CAS  Google Scholar 

  • Qi Y., Kobayashi Y. and Hulett F.M. 1997. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the Pho regulon. J. Bacteriol. 179: 2534–2539.

    PubMed  CAS  Google Scholar 

  • Sanger F., Nicklen S. and Coulson A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Seki T., Yoshikawa H., Takahashi H. and Saito H. 1987. Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphatase and phosphodiesterase in Bacillus subtilis. J. Bacteriol. 169: 2913–2916.

    PubMed  CAS  Google Scholar 

  • Seki T., Yoshikawa H., Takahashi H. and Saito H. 1988. Nucleotide sequence of the Bacillus subtilis phoR gene. J. Bacteriol. 170: 5935–5938.

    PubMed  CAS  Google Scholar 

  • Shi W. and Zusman D.R. 1995. The frz signal transduction system controls multicellular behavior in Myxococcus xanthus. In: Hoch A. and Silhavy T.J. (eds), Two-component signal transduction. ASM, Washington, DC, pp. 419–430.

    Google Scholar 

  • Sorokin A.V., Zumstein E., Azevedo V., Ehrlich S.D. and Serror P. 1993. The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol. Microbiol. 10: 385–395.

    PubMed  CAS  Google Scholar 

  • Southern E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 89: 503–517.

    Google Scholar 

  • Vieira J. and Messing J. 1982. The pUC plasmids, an M13mp7 derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Wall D., Kolenbrander P.E. and Kaiser D. 1999. The Myxococcus xanthus pilQ(sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility and development. J. Bacteriol. 181: 24–33.

    PubMed  CAS  Google Scholar 

  • Ward M.J. and Zusman D.R. 1997. Regulation of directed motility in Myxococcus xanthus. J. Bacteriol. 180: 759–761.

    Google Scholar 

  • Weinberg R.A. and Zusman D.R. 1990. Alkaline, acid and neutral phosphate activities are induced during development in Myxococcus xanthus. J. Bacteriol. 172: 2294–2302.

    PubMed  CAS  Google Scholar 

  • Yang C. and Kaplan H.B. 1997. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J. Bacteriol. 179: 7759–7767.

    PubMed  CAS  Google Scholar 

  • Yang Z., Geng Y., Xu D., Kaplan H.B. and Shi W. 1998. A new set of chemotaxis homologues is essential for Myxococcus xanthus. Mol. Microbiol. 30: 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W., Munoz-Dorado J., Inouye M. and Inouye S. 1992. Identification of a putative eukaryotic-like protein kinase family in the developmental bacterium Myxococcus xanthus. J. Bacteriol. 174: 5450–5453.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Martinez-Canamero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Canamero, M., Ortiz-Codorniu, C., Extremera, A.L. et al. phoR1, a gene encoding a new histidine protein kinase in Myxococcus xanthus . Antonie Van Leeuwenhoek 83, 361–368 (2003). https://doi.org/10.1023/A:1023360116904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023360116904

Navigation