Skip to main content
Log in

The third boundary value problem in potential theory for domains with a piecewise smooth boundary

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

The paper investigates the third boundary value problem \(\frac{{\partial u}}{{\partial n}}{ } + { \lambda }u{ } = { }\mu \) for the Laplace equation by the means of the potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where ν is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure \(T\nu . { Denote by }T:{ }\nu { } \to { }T\nu \) the corresponding operator on the space of signed measures on the boundary of the investigated domain G. If there is α ≠ 0 such that the essential spectral radius of \(\left( {\alpha I - T} \right)\) is smaller than |α| (for example, if G ⊂ R 3 is a domain “with a piecewise smooth boundary” and the restriction of the Newtonian potential \(U{ \lambda }\) on ∂G is a finite continuous functions) then the third problem is uniquely solvable in the form of a single layer potential (1) with the only exception which occurs if we study the Neumann problem for a bounded domain. In this case the problem is solvable for the boundary condition \(\mu { } \in { }C'\) for which μ(∂G) = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Angell, R.E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402.

    Google Scholar 

  2. K. Arbenz: Integralgleichungen für einige Randwertprobleme für Gebiete mit Ecken. Promotionsarbeit Nr. 2777, Eidgenössische Technishe Hochschule in Zürich 1958, 1–41.

  3. M. Brelot: Élements de la théorie classique du potential. Les cours de Sorbone, Paris, 1959.

    Google Scholar 

  4. Ju. D. Burago, V.G. Maz'ya: Some questions in potential theory and function theory for regions with irregular boundaries (Russian). Zapiski nauč. sem. Leningrad. otd. MIAN 3 (1967).

  5. Ju. D. Burago, V.G. Maz'ya and V.D. Sapožnikova: On the theory of potentials of a double and a simple layer for regions with irregular boundaries (Russian). Problems Math. Anal. Boundary Value Problems Integr. Equations. (Russian), 3–34, Izdat. Leningrad. Univ., Leningrad, 1966.

    Google Scholar 

  6. T. Carleman: Über das Neumann-Poincarésche Problem für ein Gebeit mit Ecken, Inaugural-Dissertation. Uppsala, 1916.

  7. I.I. Daniljuk: Nonregular Boundary Value Problems in the Plane. Nauka, Moskva, 1975. (In Russian.)

    Google Scholar 

  8. E. De Giorgi: Su una teoria generale della misura (r − 1)-dimensionale in uno spazi ad r dimensioni. Annali di Mat. Pura ed Appl. Ser. 4, 36 (1954), 191–213.

    Google Scholar 

  9. E. De Giorgi: Nuovi teoremi relativi alle misure (r − 1)-dimensionali in uno spazi ad r dimensioni. Ricerche Mat. 4 (1955), 95–113.

    Google Scholar 

  10. M. Dont, E. Dontová: Invariance of the Fredholm radius of an operator in potential theory. Čas. pěst. mat. 112 (1987), no. 3, 269–283.

    Google Scholar 

  11. N. Dunford, J.T. Schwarz: Linear Operators. Interscience, New York, 1963.

    Google Scholar 

  12. J. Elschner: The double-layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces. Applicable Analysis 45 (1992), 117–134.

    Google Scholar 

  13. E. Fabes: Layer potential methods for boundary value problems on Lipschitz domains, in J. Král, J. Lukeš, I. Netuka and J. Veselý (eds.): Potential Theory. Surveys and Problems. Proceedings, Prague 1987. Lecture Notes in Mathematics 1344.. Springer-Verlag, Berlin-Heidelberg-New York, 1988.

    Google Scholar 

  14. E.B. Fabes, M. Jodeit Jr., J.E. Lewis: Double layer potentials for domain with corners and edges. Indiana Univ. Math. J. 26 (1977), 95–114.

    Google Scholar 

  15. E. Fabes, M. Sand, J.K. Seo: The spectral radius of the classical layer potentials on convex domains. Partial Differential Equations With Minímal Smoothness and Applications, 129–137, IMA Vol. Math. Appl. 42. Springer, New York, 1992.

    Google Scholar 

  16. H. Federer: A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9 (1958), 447–451.

    Google Scholar 

  17. H. Federer: Geometric Measure Theory. Springer-Verlag, 1969.

  18. H. Federer: The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44–76.

    Google Scholar 

  19. N.V. Grachev: Representations and estimates for inverse operators of the potential theory integral equations in a polyhedron. Potential Theory (Nagoya, 1990), 201–206. de Gruyter, Berlin, 1992.

    Google Scholar 

  20. N.V. Grachev, V.G. Maz'ya: On the Fredholm radius for operators of double-layer type on the piece-wise smooth boundary (Russian).. Vest. Leningr. un. mat. mech. (1986), no. 4, 60–64.

    Google Scholar 

  21. N.V. Grachev, V.G. Maz'ya: Representations and estimates for inverse operators of the potential theory integral equations on surfaces with conic points. Soobstch. Akad. Nauk Gruzin SSR 132 (1988), 21–23. (In Russian.)

    Google Scholar 

  22. N.V. Grachev, V.G. Maz'ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Preprint N26, Akad. Nauk SSSR. Inst. of Engin. Studies, Leningrad, 1989. (In Russian.)

  23. N.V. Grachev, V.G. Maz'ya: On invertibility of the boundary integral operators of elasticity on surfaces with conic points in the spaces generated by norms C, C α, L p , Preprint N30, Akad. Nauk SSSR, Inst. of Engin. Studies, Leningrad, 1990. (In Russian.)

  24. P.R. Halmos: Finite-Dimensional Vector Spaces. D. van Nostrand, Princeton-Toronto-London-New York, 1963.

    Google Scholar 

  25. D.S. Jerison and C.E. Kenig: The Dirichlet problem in non smooth domains. Annals of Mathematics 113 (1981), 367–382.

    Google Scholar 

  26. D.S. Jerison and C.E. Kenig: The Neumann problem in Lipschitz domains. Bulletin of AMS 4 (1981), 203–207.

    Google Scholar 

  27. K. Jörgens: Lineare Integraloperatoren. B.G. Teubner, Stuttgart, 1970.

    Google Scholar 

  28. J. Král: Integral operators in potential theory.. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin-Heidelberg-New York, 1980.

    Google Scholar 

  29. J. Král: The Fredholm radius of an operator in potential theory. Czechoslovak Math. J. 15(90) (1965), 454–473, 565–588.

    Google Scholar 

  30. J. Král: Flows of heat and the Fourier problem. Czechoslovak Math. J. 20(95) (1970), 556–597.

    Google Scholar 

  31. J. Král: Note on sets whose characteristic functions have singed measure for their partial derivatives. Čas. pěst. mat. 86 (1961), 178–194. (In Czech.)

    Google Scholar 

  32. J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547.

    Google Scholar 

  33. J. Král, W.L. Wendland: Some example concerning applicability of the Fredholm-Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308.

    Google Scholar 

  34. N.L. Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (In Russian.)

    Google Scholar 

  35. V.G. Maz'ya: Boundary integral equations. Sovremennyje problemy matematiki, fundamental'nyje napravlenija, t. 27. Viniti, Moskva, 1988. (In Russian.)

  36. V.G. Maz'ya: Boundary integral equations, Encyclopedia of Mathematical Sciences. vol. 27, Springer-Verlag, 1991.

  37. V.G. Maz'ya, B.A. Plamenevsky: The first boundary-value problem for the classical equations of the mathematical physics in domain with piece-wise smooth boundary. I, II. Z. Anal. Anwend. 2 (1983), no. 4, 335–359, No. 6, 523–551. (In Russian.)

  38. W. McLean: Boundary integral methods for the Laplace equation. Thesis. Australian National University, 1985.

  39. D. Medková: On the convergence of Neumann series for noncompact operators. Czechoslovak Math. J. 41(116) (1991), 312–316.

    Google Scholar 

  40. D. Medková: Invariance of the Fredholm radius of the Neumann operator. Čas. pěst. mat. 115 (1990), no. 2, 147–164.

    Google Scholar 

  41. D. Medková: On essential norm of Neumann operator. Mathematica Bohemica 117 (1992), no. 4, 393–408.

    Google Scholar 

  42. S.G. Michlin: Integralnyje uravnenija i ich prilozhenija k nekotorym problemam mekhaniki, matematicheskoj fiziki i tekhniki. Moskva, 1949.

  43. I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205–211.

    Google Scholar 

  44. I. Netuka: Generalized Robin problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 312–324.

    Google Scholar 

  45. I. Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 462–489.

    Google Scholar 

  46. I. Netuka: The third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 554–580.

    Google Scholar 

  47. J. Plemelj: Potentialtheoretische Untersuchungen. Leipzig, 1911.

  48. J. Radon: Über lineare Funktionaltransformationen und Funktionalgleichungen. Collected Works. vol. 1, 1987.

  49. J. Radon: Über Randwertaufgaben beim logarithmischen Potential. Collected Works. vol. 1, 1987.

  50. A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron: The panel method. Applicable Analysis 45 (1992), no. 1–4, 135–177.

    Google Scholar 

  51. S. Rempel: Corner singularity for transmission problems in three dimensions. Integral Equations and Operator Theory 12 (1989), 835–854.

    Google Scholar 

  52. S. Rempel and G. Schmidt: Eigenvalues for spherical domains with corners via boundary integral equations. Integral Equations Oper. Theory 14 (1991), 229–250.

    Google Scholar 

  53. F. Riesz, B. Sz. Nagy: Leçons d'analyse fonctionelle. Budapest, 1952.

  54. S. Saks: Theory of the Integral. Hafner Publishing Comp., New York, 1937.

    Google Scholar 

  55. V.D. Sapožnikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35–44. Izdat. Leningrad. Univ., Leningrad, 1966.

    Google Scholar 

  56. M. Schechter: Principles of Functional Analysis. Academic Press, 1973.

  57. L. Schwartz: Théorie des distributions. Hermann, Paris, 1950.

    Google Scholar 

  58. N. Suzuki: On the convergence of Neumann series in Banach space. Math. Ann. 220 (1976), 143–146.

    Google Scholar 

  59. A.E. Taylor: Introduction to Functional Analysis. New York, 1967.

  60. G.C. Verchota: Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. Journal of Functional Analysis 59 (1984), 572–611.

    Google Scholar 

  61. K. Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medková, D. The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Mathematical Journal 47, 651–679 (1997). https://doi.org/10.1023/A:1022818618177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022818618177

Keywords

Navigation