Skip to main content
Log in

Evaluation of Residual Stresses in the Bulk of Materials by High Energy Synchrotron Diffraction

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

High energy synchrotron diffraction is introduced as a new method for residual stress analysis in the bulk of materials. It is shown that energy dispersive measurements are sufficiently precise so that strains as small 10−4 can be determined reliably. Due to the high intensity and the high parallelism of the high energy synchrotron radiation the sample gauge volume can be reduced to approximately 50 μm × 1 mm × 1 mm compared to gauge volume of one mm3 up to several mm3 achievable by neutron diffraction. The benefits of the high penetration depth and the small gauge volume are demonstrated by the results of stress studies performed on a fiber reinforced ceramic, a functional gradient material and a metal–ceramic compound. Furthermore, it is shown that in case of a cold extruded metal specimen the energy dispersive measurement technique yields simultaneous information about texture and residual stresses and thus allows a detailed investigation of elastic and plastic deformation gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. Ruppersberg and I. Detemple, Mater. Sci. Eng. A161: 41–44 (1993).

    Google Scholar 

  2. H. Ruppersberg, Adv. X-Ray Anal. 35: 481–487 (1992).

    Google Scholar 

  3. G. Brusch and W. Reimers, Proceedings of the ICRS 5, Linköping, Sweden, 1997, pp. 557–562.

  4. M. Hutchings, Neutron News 3: 14–19 (1992).

    Google Scholar 

  5. L. Pintschovius, in Measurement of Residual and Applied Stress Using Neutron Diffraction, M. Hutchings and A. Krawitz, eds. (Kluwer Academic Publisher Dordrecht, Boston, London, 1989), pp. 115–128.

  6. C. J. Bechtoldt, R. C. Placious, W. J. Boettinger, and M. Kuriyama Adv. X-Ray Anal. 25: 330–338 (1981).

    Google Scholar 

  7. R. D. Black, C. J. Bechtoldt, R. C. Placious, and M. Kuriyama, J. Nondestr. Eval. 5(1): 21–25 (1985).

    Google Scholar 

  8. J. Neuefeind and H. F. Poulsen, Phys. Scripta T57: 112–116 (1995).

    Google Scholar 

  9. H. F. Poulsen, S. Garbe, T. Lorentzen, D. J. Jensen, F. W. Poulsen, N. H. Andersen, T. Frello, R. Feidenhans, and H. Graafsma, preprint (submitted to J. Synchr. Radiat.).

  10. M. R. Daymond and P. J. Withers, Scripta Mater. 35(10): 1229–1234 (1996).

    Google Scholar 

  11. P. J. Webster, X. D. Wang, and G. Mills, Mater. Sci. Forum 228–321: 227–232 (1996).

    Google Scholar 

  12. C. G. Windsor, in Measurement of Residual and Applied Stress Using Neutron Diffraction, M. Hutchings and A. Krawitz, eds. (Kluwer Academic Publisher Dordrecht, Boston, London, 1989), pp. 285–296.

  13. T. Tschentscher and P. Suortti, J. Synchr. Radiat. (submitted).

  14. P. Suortti and T. Tschentscher, Rev. Sci. Instr. 66(2): 1798–1801 (1995).

    Google Scholar 

  15. J. Chakrabarty, Theory of Plasticity (McGraw-Hill Book Company, New York, 1987), p. 129.

    Google Scholar 

  16. R. Ostertag and T. Haug, in Advanced Structural Inorganic Composites, P. Vincenzini, ed. (Elsevier Science Publishers, London, New York, 1991), pp. 469–477.

    Google Scholar 

  17. Y. M. Chiang, D. P. Birnie, and W. D. Kingery, Physical Ceramics-Principles for Ceramic Science and Engineering (John Wiley & Sons, New York, 1997), pp. 26–33.

    Google Scholar 

  18. P. Müller and E. Macherauch, Z. Angew. Phy. 13: 305–312 (1961).

    Google Scholar 

  19. G. Arlt and G. R. Schodder, J. Acoust. Soc. Am. 37: 384 (1965).

    Google Scholar 

  20. R. M. Martin, Phys. Rev. B 6: 4546 (1972).

    Google Scholar 

  21. B. H. Rabin, R. L. Williamson, and S. Suresh, MRS Bull. 20(1): 37–39 (1995).

    Google Scholar 

  22. G. Faninger and U. Hartmann, Härterei Technische Mitteilungen 27: 233–244 (1972).

    Google Scholar 

  23. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series Group III, Vol. 11, K. Hellwege, ed. (Springer Verlag, Berlin, Heidelberg, New York, 1979), p. 50.

    Google Scholar 

  24. U. Baron, T. Cosack, R. Elsing, P. Izquierdo, W. Reimers, G. Schäfer, T. Schmackers, C. Schwaminger, and M. Wildau, Abschlußbericht des BMBF-Projektes: Charakterisierung des Spannungs-Dehnungsverhaltens in Metall-keramischen Schichtverbunden, Fördernummer: 03M 2114 B.

  25. O. T. Iancu and D. Munz, J. Am. Ceram. Soc. 73: 1144–1149 (1990).

    Google Scholar 

  26. G. Wassermann and J. Grewen, Texturen metallischer Werkstoffe (Springer Verlag, Berlin, 1962).

    Google Scholar 

  27. A. E. Tekkaya, Ermittlung von Eigenspannungen in der Kaltmasssivumformung, Thesis, Universität Stuttgart (1986).

  28. A. Pyzalla and W. Reimers, in Competitive Advantages by Near-Net-Shape Manufacturing, H.-D. Kunze, ed. (DGM—Informationsgesellschaft Verlag, Oberursel, 1997), pp. 175–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimers, W., Broda, M., Brusch, G. et al. Evaluation of Residual Stresses in the Bulk of Materials by High Energy Synchrotron Diffraction. Journal of Nondestructive Evaluation 17, 129–140 (1998). https://doi.org/10.1023/A:1022607030355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022607030355

Navigation