Skip to main content
Log in

Sterically Stabilized Phospholipid Mixed Micelles: In Vitro Evaluation as a Novel Carrier for Water-Insoluble Drugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Sterically stabilized phospholipid micelles (SSMs) composed of poly(ethylene glycol-2000)-grafted distearoyl phosphatidylethanolamine (PEG(2000)-DSPE) are new and promising lipid-based carriers for water-insoluble drugs. This study investigates and compares sterically stabilized mixed micelles (SSMM), composed of (PEG(2000)-DSPE) plus egg-phosphatidylcholine, with SSM as a novel delivery system for improved solubilization of water-insoluble drugs using paclitaxel as a model.

Methods. Paclitaxel was solubilized in SSM (P-SSM) and SSMM (P-SSMM) by coprecipitation and rehydration with isotonic 0.01M HEPES buffer, pH 7.4. After separation of excess drug by centrifugation, mean particle size and morphology of particles in the supernatant were determined by quasi-elastic light scattering and transmission electron microscopy. The solubilization potentials of SSMM and SSM for paclitaxel were determined by reverse phase high pressure liquid chromatography (RP-HPLC). Cytotoxic activity of paclitaxel in SSMM, SSM, and dimethyl sulfoxide (10% DMSO) was determined against human breast cancer cells (MCF-7).

Results. Mean hydrodynamic diameter of P-SSMM and P-SSM were 13.1 ± 1.1 nm and 15 ± 1 nm (n = 3), respectively. SSMM solubilized 1.5 times more paclitaxel than SSM for the same total lipid concentration. Solubilized paclitaxel amount increased linearly with an increase in lipid concentration. A therapeutically relevant lipid concentration (15 mM) of SSMM solubilized 1321 ± 48μg/ml of paclitaxel. Paclitaxel in the absence of sufficient SSM aggregated to form lipid-coated crystals. P-SSMM, P-SSM, and paclitaxel in DMSO had comparable cytotoxic activities against MCF-7 cells.

Conclusions. SSMM showed increased solubilization potential compared with SSM while retaining all of its own advantages. Therefore, it can be used as an improved lipid-based carrier for water-insoluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Wade and P. J. Weller. Handbook of Pharmaceutical Excipients, pp. 267-268, American Pharmaceutical Association & The Pharmaceutical Press, Washington, 1994.

    Google Scholar 

  2. P. K. Working and A. D. Dayan. Pharmacological-toxicological expert report CAELYX. (Stealth liposomal doxorubicin HCl). Hum. Exp. Toxicol. 15:751-785 (1996).

    Google Scholar 

  3. A. Sharma, E. Mayhew, L. Bolcsak, C. Cavanaugh, P. Harmon, A. Janoff, and R. J. Bernacki. Activity of paclitaxel liposome formulations against human ovarian tumor xenografts. Int. J. Cancer 71:103-107 (1997).

    Google Scholar 

  4. A. Sharma and R. M. Straubinger. Novel taxol formulations: Preparation and characterization of taxol-containing liposomes. Pharm. Res. 11:889-896 (1994).

    Google Scholar 

  5. S. V. Balasubramanian, J. L. Alderfer, and R. M. Straubinger. Solvent-and concentration-dependent molecular interactions of taxol (Paclitaxel). J. Pharm. Sci. 83:1470-1476 (1994).

    Google Scholar 

  6. H. Alkan-Onyuksel and K. Son. Mixed micelles as proliposomes for the solubilization of teniposide. Pharm. Res. 9:1556-1562 (1992).

    Google Scholar 

  7. H. Alkan-Onyuksel, S. Ramakrishnan, H. B. Chau, and J. M. Pezzuto. A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm. Res. 11:206-212 (1994).

    Google Scholar 

  8. A. K. Lukyanov, K. Whiteman, T. Levchenko, V. Weissig, A. Singhal, R. Ray, and V. Torchilin. Long-circulating therapeutic micelles from PE-PEG. Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. 28, pp. 466-467, Controlled Release Society, Inc. San Diego, California 2001.

    Google Scholar 

  9. H. Onyuksel, B. Ashok, and I. Rubinstein. Effect of PEG Chain Length on Size, CMC, and Solubilization Potential of Sterically Stabilized Phospholipid Micelles, in: 61st International Congress of FIP, pp. 82, Singapore, 2001.

  10. V. P. Torchilin. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release 73:137-172 (2001).

    Google Scholar 

  11. H. Onyuksel, H. Ikezaki, M. Patel, X. P. Gao, and I. Rubinstein. A novel formulation of VIP in sterically stabilized micelles amplifies vasodilation in vivo. Pharm. Res. 16:155-160 (1999).

    Google Scholar 

  12. V. Weissig, K. R. Whiteman, and V. P. Torchilin. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm. Res. 15:1552-1556 (1998).

    Google Scholar 

  13. J. M. Terwogt, B. Nuijen, W. W. Huinink, and J. H. Beijnen. Alternative formulations of paclitaxel. Cancer Treat. Rev. 23:87-95 (1997).

    Google Scholar 

  14. D. R. Kohler and B. R. Goldspiel. Paclitaxel (taxol). Pharmacotherapy 14:3-34 (1994).

    Google Scholar 

  15. L. van Zuylen, M. O. Karlsson, J. Verweij, E. Brouwer, P. de Bruijn, K. Nooter, G. Stoter, and A. Sparreboom. Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother. Pharmacol. 47:309-318 (2001).

    Google Scholar 

  16. A. L. Blajeski, T. J. Kottke, and S. H. Kaufmann. A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp. Cell Res. 270:277-288 (2001).

    Google Scholar 

  17. Y. Liu, S. M. Ali, T. C. Boge, G. I. Georg, S. Victory, J. Zygmunt, R. T. Marquez, and R. H. Himes. A systematic SAR study of C10 modified paclitaxel analogues using a combinatorial approach. Comb. Chem. High Throughput Screen 5:39-48 (2002).

    Google Scholar 

  18. K. Likhitwitayawuid, C. K. Angerhofer, G. A. Cordell, J. M. Pezzuto, and N. Ruangrungsi. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erecta. J. Nat. Prod. 56:30-38 (1993).

    Google Scholar 

  19. S. Rex, M. J. Zuckermann, M. Lafleur, and J. R. Silvius. Experimental and Monte Carlo simulation studies of the thermodynamics of polyethyleneglycol chains grafted to lipid bilayers. Biophys. J. 75:2900-2914 (1998).

    Google Scholar 

  20. S. Belsito, R. Bartucci, and L. Sportelli. Lipid chain length effect on the phase behaviour of PCs/PEG:2000-PEs mixtures. A spin label electron spin resonance and spectrophotometric study. Biophys. Chem. 93:11-22 (2001).

    Google Scholar 

  21. R.M. Straubinger. In: M. Suffness (ed.) Taxol Science and Applications, pp. 237-258, CRC Press, New York, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayat Önyüksel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnadas, A., Rubinstein, I. & Önyüksel, H. Sterically Stabilized Phospholipid Mixed Micelles: In Vitro Evaluation as a Novel Carrier for Water-Insoluble Drugs. Pharm Res 20, 297–302 (2003). https://doi.org/10.1023/A:1022243709003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022243709003

Navigation