Skip to main content
Log in

Molar Heat Capacity at Constant Volume of 1,1-Difluoroethane (R152a) and 1,1,1-Trifluoroethane (R143a) from the Triple-Point Temperature to 345 K at Pressures to 35 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Molar heat capacities at constant volume (C v) of 1,1-difluoroethane (R152a) and 1,1,1-trifluoroethane (R143a) have been measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase ((C (2)v ), saturated-liquid (C σ or C 'x ), and single-phase (C v) molar heat capacities. The C σ data were used to estimate vapor pressures for values less than 105 kPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature and the enthalpy of fusion were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded relative uncertainty (with a coverage factor k=2 and thus a two-standard deviation estimate) for C v is estimated to be 0.7%, for C (2)v it is 0.5%, and for C σ it is 0.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. D. Goodwin, J. Res. Natl. Bur. Stand. (U.S.) 65C:231 (1961).

    Google Scholar 

  2. J. W. Magee, J. Res. Natl. Inst. Stand. Technol. 96:725 (1991).

    Google Scholar 

  3. Y. Kubota, H. Sugitani, Y. Tanaka, and T. Makita, Chemistry Express 2:397 (1987).

    Google Scholar 

  4. S. Nakagawa, T. Hori, H. Sato, and K. Watanabe, J. Chem. Eng. Data 38:70 (1993).

    Google Scholar 

  5. E. G. Porichanski, O. P. Ponomareva, and P. I. Svetlichny, Izv. Vyssh. Uchebn. Zaved Energ. 3:122 (1982) (in Russian).

    Google Scholar 

  6. H. Russell, D. R. V. Golding, and D. M. Yost, J. Am. Chem. Soc. 66:16 (1944).

    Google Scholar 

  7. R. D. Goodwin and L. A. Weber, J. Res. Natl. Bur. Stand. (U.S.) 73A:1 (1969).

    Google Scholar 

  8. R. T Jacobsen and R. B. Stewart, J. Phys. Chem. Ref. Data 2:757 (1973).

    Google Scholar 

  9. S. L. Outcalt and M. O. McLinden, J. Phys. Chem. Ref. Data 25:605 (1996).

    Google Scholar 

  10. S. L. Outcalt and M. O. McLinden, Int. J. Thermophys. 18:1445 (1997).

    Google Scholar 

  11. J. S. Rowlinson, Liquids and Liquid Mixtures (Butterworths, London, 1969), p. 37.

    Google Scholar 

  12. W. Wagner, Eine mathematisch statistische Methode zum Aufstellen thermodynamischer Gleichungen—gezeigt am Beispiel der Dampfdruckgleichung reiner Fluide; Habilitationsschrift TU Braunschweig, FortschrBer VDI-Zeitschriften Reihe 3, Nr.39 (VDI, Düsseldorf, 1974).

    Google Scholar 

  13. L. A. Weber, Int. J. Refrig. 17:117 (1992).

    Google Scholar 

  14. W. Blanke and R. Weiß. Fluid Phase Equil. 80:179 (1992).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magee, J.W. Molar Heat Capacity at Constant Volume of 1,1-Difluoroethane (R152a) and 1,1,1-Trifluoroethane (R143a) from the Triple-Point Temperature to 345 K at Pressures to 35 MPa. International Journal of Thermophysics 19, 1397–1420 (1998). https://doi.org/10.1023/A:1021983502589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021983502589

Navigation