Skip to main content
Log in

Dynamics of Trapped Bose Gases at Finite Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Starting from an approximate microscopic model of a trapped Bose-condensed gas at finite temperatures, we derive an equation of motion for the condensate wavefunction and a quantum kinetic equation for the distribution function for the excited atoms. The kinetic equation is a generalization of our earlier work in that collisions between the condensate and non-condensate (C 12 ) are now included, in addition to collisions between the excited atoms as described by the Uehling–Uhlenbeck (C 22 ) collision integral. The continuity equation for the local condensate density contains a source term Γ 12 which is related to the C 12 collision term. If we assume that the C 22 collision rate is sufficiently rapid to ensure that the non-condensate distribution function can be approximated by a local equilibrium Bose distribution, the kinetic equation can be used to derive hydrodynamic equations for the non-condensate. The Γ 12 source terms appearing in these equations play a key role in describing the equilibration of the local chemical potentials associated with the condensate and non-condensate components. We give a detailed study of these hydrodynamic equations and show how the Landau two-fluid equations emerge in the frequency domain ωτμ ≪ τμ is a characteristic relaxation time associated with C 12 collisions. More generally, the lack of complete local equilibrium between the condensate and non-condensate is shown to give rise to a new relaxational mode which is associated with the exchange of atoms between the two components. This new mode provides an additional source of damping in the hydrodynamic regime. Our equations are consistent with the generalized Kohn theorem for the center of mass motion of the trapped gas even in the presence of collisions. Finally, we formulate a variational solution of the equations which provides a very convenient and physical way of estimating normal mode frequencies. In particular, we use relatively simple trial functions within this approach to work out some of the monopole, dipole and quadrupole oscillations for an isotropic trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Google Scholar 

  2. D. A. W. Hutchinson, E. Zaremba, and A. Griffin, Phys. Rev. Lett. 78, 1842 (1997); for anisotropic traps, see R. J. Dodd, K. Burnett, M. Edwards, and C. Clark, Phys. Rev. A 57, R32 (1998).

    Google Scholar 

  3. A. Minguzzi and M. P. Tosi, J. Phys.: Cond. Mat. 9, 10211 (1997).

    Google Scholar 

  4. S. Giorgini, Phys. Rev. A 57, 2949 (1998).

    Google Scholar 

  5. E. Zaremba, A. Griffin, and T. Nikuni, Phys. Rev. A 57, 4695 (1998); this paper is referred to as ZGN.

    Google Scholar 

  6. L. D. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941).

    Google Scholar 

  7. I. K. Khalatnikov, An Introduction to the Theory of Superfluidity, W. A. Benjamin, New York (1965).

    Google Scholar 

  8. U. Eckern, J. Low Temp. Phys. 54, 333 (1984).

    Google Scholar 

  9. L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 96, 469 (1954).

    Google Scholar 

  10. L. P. Pitaevskii, Sov. Phys. JETP 35, 282 (1959).

    Google Scholar 

  11. K. Miyake and K. Yamada, Prog. Theor. Phys. 56, 1689 (1976) and references therein.

    Google Scholar 

  12. T. Nikuni, E. Zaremba, and A. Griffin, Phys. Rev. Lett. 83, 10 (1999).

    Google Scholar 

  13. T. R. Kirkpatrick and J. R. Dorfman, Phys. Rev. A 28, 2576 (1983); J. Low Temp. Phys. 58, 308, 399 (1985).

    Google Scholar 

  14. N. N. Bogoliubov, Lectures on Quantum Statistics, Gordon and Breach, N.Y. (1970), Vol. 2, p. 148.

    Google Scholar 

  15. C. W. Gardiner, M. D. Lee, R. J. Ballagh, M. J. Davies, and P. Zoller, Phys. Rev. Lett. 81, 5266 (1998). References to earlier work are given here.

    Google Scholar 

  16. N. P. Proukakis, K. Burnett, and H. T. C. Stoof, Phys. Rev. A 57, 1230 (1998); see also, N. P. Proukakis and K. Burnett, J. Res. Natl. Stand. Technol. 101, 457 (1996).

    Google Scholar 

  17. H. T. C. Stoof, J. Low Temp. Phys. 114, 11 (1999).

    Google Scholar 

  18. R. Walser, J. Williams, J. Cooper, and M. Holland, Phys. Rev. A 59, 3878 (1999).

    Google Scholar 

  19. E. Zaremba, M. Bijlsma, and H. C. T. Stoof, to be published.

  20. J. Javinainen, Phys. Rev. A 54, R3722 (1996).

    Google Scholar 

  21. A. Griffin, Phys. Rev. B 53, 9341 (1996).

    Google Scholar 

  22. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).

    Google Scholar 

  23. E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552 (1933).

    Google Scholar 

  24. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, N.Y. (1962).

    Google Scholar 

  25. T. Lopez-Arias and A. Smerzi, Phys. Rev. A 58, 526 (1998) and references therein.

    Google Scholar 

  26. S. Giorgini, L. P. Pitaevskii, and S. Stringari, J. Low Temp. Phys. 109, 309 (1997).

    Google Scholar 

  27. M. J. Bijlsma and H. T. C. Stoof, cond-mat/9902065.

  28. A. Griffin and E. Zaremba, Phys. Rev. A 56, 4826 (1997).

    Google Scholar 

  29. K. Huang, Statistical Mechanics, Wiley, New York (1987), 2nd ed.

    Google Scholar 

  30. T. Nikuni and A. Griffin, J. Low Temp. Phys. 111, 793 (1998).

    Google Scholar 

  31. G. M. Kavoulakis, C. J. Pethick, and H. Smith, Phys. Rev. A 57, 2938 (1998).

    Google Scholar 

  32. G. Baym and C. J. Pethick, Phys. Rev. Lett. 76, 6 (1996).

    Google Scholar 

  33. D. A. Huse and E. D. Siggia, J. Low Temp. Phys. 46, 137 (1982).

    Google Scholar 

  34. P. Nozières and D. Pines, The Theory of Quantum Liquids, Addison-Wesley, Redwood City, California (1990), Vol. II.

    Google Scholar 

  35. V. B. Shenoy and T. L. Ho, Phys. Rev. Lett. 80, 3895 (1998).

    Google Scholar 

  36. D. M. Stamper-Kurn, H.-J. Miesner, S. Inouye, M. R. Andrews, and W. Ketterle, Phys. Rev. Lett. 81, 500 (1998).

    Google Scholar 

  37. C. Gay and A. Griffin, J. Low Temp. Phys. 58, 479 (1985).

    Google Scholar 

  38. J. F. Dobson, Phys. Rev. Lett. 73, 7244 (1994), and references therein.

    Google Scholar 

  39. M. Edwards, P. A. Ruprecht, K. Burnett, R. J. Dodd, and C. W. Clark, Phys. Rev. Lett. 77, 1671 (1996).

    Google Scholar 

  40. L. D. Landau and E. M. Lifshitz, Theory of Elasticity. Pergamon Press, Oxford (1970), 2nd ed.

    Google Scholar 

  41. B. W. King, M.Sc. Thesis, Queen's University, Kingston, July 1998.

  42. A. Griffin, W. C. Wu, and S. Stringari, Phys. Rev. Lett. 78, 1838 (1997).

    Google Scholar 

  43. D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 78, 764 (1997).

    Google Scholar 

  44. T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958).

    Google Scholar 

  45. P. C. Hohenberg and P. C. Martin, Ann. of Phys. (N.Y.) 34, 291 (1965).

    Google Scholar 

  46. A. Griffin, in Bose-Einstein Condensation in Atomic Gases, edited by M. Inguscio, S. Stringari, and C. Wieman, Italian Physical Society, in press; cond-mat/9901172.

  47. M. Imamović-Tomasović and A. Griffin, Phys. Rev. A 60, 494 (1999).

    Google Scholar 

  48. H. Shi and A. Griffin, Phys. Reports 304, 1 (1998).

    Google Scholar 

  49. N. P. Proukakis, S. A. Morgan, S. Choi, and K. Burnett, Phys. Rev. A 58, 2435 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaremba, E., Nikuni, T. & Griffin, A. Dynamics of Trapped Bose Gases at Finite Temperatures. Journal of Low Temperature Physics 116, 277–345 (1999). https://doi.org/10.1023/A:1021846002995

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021846002995

Keywords

Navigation