Skip to main content
Log in

Prolonged glutamate excitotoxicity: Effects on mitochondrial antioxidants and antioxidant enzymes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glutamate, a major excitatory amino acid neurotransmitter is also an endogenous excitotoxin. The present study examined the prolonged and delayed effects of glutamate excitotoxicity on mitochondrial lipid peroxidation and antioxidant parameters in different brain regions, namely, cerebral hemisphere, cerebellum, brain stem and diencephalon. Wistar rats (male) were exposed to monosodium glutamate (MSG) (4 mg × g body wt−1, i.p.) for 6 consecutive days and sacrificed on 30th and 45th day after last MSG dose. MSG treatment markedly decreased the mitochondrial manganese superoxide-dismutase (Mn-SOD), catalase and reduced glutathione (GSH) content, and increased the lipid peroxidation (LPx), uric acid and glutathione peroxidase (GPx) activity. These results indicate that oxidative stress produced by glutamate in vulnerable brain regions may persist for longer periods and mitochondrial function impairment is an important mechanism of excitatory amino acid mediated neurotoxicity in chronic neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholls DG, Budd SL: Mitochondria and neuronal survival. Physiol Rev 80: 315-360, 2000

    Google Scholar 

  2. Coyle JT, Puttfarcken P: Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689-695, 1993

    Google Scholar 

  3. Keidrowski L, Costa E: Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: Role of mitochondria in calcium buffering. Mol Pharmacol 47: 140-147, 1992

    Google Scholar 

  4. White RJ, Reynolds IJ: Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 15: 1318-1328, 1995

    Google Scholar 

  5. Burgard EC, Hablitz JJ: N-Methyl-D-aspartate receptors-mediated calcium accumulation in neocortical neurons. Neuroscience 69: 351-362, 1995

    Google Scholar 

  6. Limbrick DD Jr, Churn SB, Sombati S, DeLorenzo RJ: Inability to restore resting intracellular calcium levels as an early indicator of delayed neuronal death. Brain Res 690: 145-156, 1995

    Google Scholar 

  7. Castilho RF, Hansson O, Ward MW, Budd SL, Nicholls DG: Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 18: 10277-10286, 1998

    Google Scholar 

  8. Randall RD, Thayer SA: Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 12: 1882-1895, 1992

    Google Scholar 

  9. Luetjens MC, Bui NT, Sengpiel B, Münstermann G, Poppe M, Krohn AJ, Bauerbach E, Krieglstein J, Prehn JHM: Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci 20: 5715-5723, 2000

    Google Scholar 

  10. Castilho RF, Ward MW, Nicholls DG: Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 72: 1394-1401, 1999

    Google Scholar 

  11. Dugan LL, Sensi SL, Canzoneiro LMT, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW: Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 15: 6377-6388, 1995

    Google Scholar 

  12. Reynolds IJ, Hastings TG: Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15: 536-537, 1995

    Google Scholar 

  13. Bindokas VP, Jordan J, Lee CC, Miller RJ: Superoxide production in rat hippocampal neurons: Selective imaging with hydroethidine. J Neurosci 16: 1324-1336, 1996

    Google Scholar 

  14. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ: Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1: 366-373, 1998

    Google Scholar 

  15. Vergun O, Sobolevsky AI, Yelshansky MV, Keelan J, Khodorov BI, Duchen MR: Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurons in culture. J Physiol 531: 147-163, 2001

    Google Scholar 

  16. Babu GN, Bawari M, Ali MM: Lipid peroxidation potential and antioxidant status of circumventricular organs of rat brain following neonatal monosodium glutamate. Neurotoxicol 15: 773-777, 1994

    Google Scholar 

  17. Bawari M, Babu GN, Ali MM, Mishra UK: Effects of neonatal monosodium glutamate on lipid peroxidation in adult rat brain. Neuro Report 6: 405-412, 1995

    Google Scholar 

  18. McCord JM, Fridovich I: Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055, 1969

    Google Scholar 

  19. Aebi H: Catalase in vitro. In: L. Packer (ed). Methods in Enzymology, vol. 105. Academic Press, New York, 1984, pp 121-126

    Google Scholar 

  20. Sedlak J, Lindsay RH: Estimation of total, protein bound and non-protein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25: 192-205, 1968

    Google Scholar 

  21. Flohe L, Gunzler WA: Assays of glutathione peroxidase. In: L. Packer (ed). Methods in Enzymology, vol. 105. Academic Press, New York, 1984, pp 114-121

    Google Scholar 

  22. Beuge JA, Aust AD: Microsomal lipid peroxidation. In: L. Packer (ed). Methods in Enzymology, vol. 52. Academic Press, New York, 1978, pp 302-310

    Google Scholar 

  23. Hsu C, Hsieh YL, Lue SI, Hsu HK: Sex specific expression of N-methyl-D-aspartate (NMDAR) in the preoptic area of neonatal rats. Neurosci Lett 262: 85-88, 1999

    Google Scholar 

  24. Kubo T, Kohira R, Okano T, Ishikawa K: Neonatal glutamate can destroy the hippocampal CA1 structure and impair discrimination learning in rats. Brain Res 616: 311-314, 1993

    Google Scholar 

  25. Olney JW: Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164: 719-721, 1969

    Google Scholar 

  26. Olney JW: Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature 227: 600-601, 1970

    Google Scholar 

  27. Arees EA, Mayer J: Monosodium glutamate-induced brain lesions: Electron microscopic examination. Science 170: 549-550, 1970

    Google Scholar 

  28. Pizzi CJ, Saplosky R, Brahmbhat JE: Monosodium glutamate: Endocrinological effects on neonates. Pharmacol Biochem Behav 5: 551-557, 1976

    Google Scholar 

  29. Beal MF: Mechanism of excitotoxicity in neurologic diseases. FASEB J 6: 3338-3344, 1992

    Google Scholar 

  30. Beal MF: Role of excitotoxicity in human neurological diseases. Curr Opin Neurobiol 2: 657-662, 1992

    Google Scholar 

  31. Yoneda Y, Nobuyuki K, Kitayama T, Hinoi E: Consolidation of transient ionotropic glutamate signals through nuclear transcription factors in the brain. Prog Neurobiol 63: 697-719, 2001

    Google Scholar 

  32. Zhu CH, Huang Y, Oberley LW, Domann FE: A family of AP-2 proteins down-regulate manganese superoxide dismutase expression. J Biol Chem 276: 14407-14413, 2001

    Google Scholar 

  33. Kono Y, Fridovich I: Superoxide radical inhibits catalase. J Biol Chem 257: 5751-5754, 1982

    Google Scholar 

  34. Patel M, Day BJ, Crapo JD, Fridovich I, McNamara JO: Requirements for superoxide in excitotoxic cell death. Neuron 16: 345-355, 1996

    Google Scholar 

  35. Gardner PR, Fridovich I: Superoxide sensitivity of Escherichia coli 6-phosphogluconate dehydrogenase. J Biol Chem 266: 1478-1483, 1991

    Google Scholar 

  36. Qing-You L, Pederson C, Day BJ, Patel M: Dependence of excitotoxicity neurodegeneration on mitochondrial aconitase inactivation. J Neurochem 78: 746-755, 2001

    Google Scholar 

  37. Doroshow JH, Locker GY, Myers CE: Enzymatic defenses of the mouse heart against reactive oxygen metabolites: Alterations produced by doxorubicin. J Clin Invest 65:128-135, 1980

    Google Scholar 

  38. Kakkar R, Kalra J, Mantha SV, Prasad K: Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem 151: 113-119, 1995

    Google Scholar 

  39. Bhardwaj SK, Sharma P, Kaur G: Alterations in free radical scavenger system profile of type I diabetic rat brain. Mol Chem Neuropathol 35: 187-202, 1998

    Google Scholar 

  40. Halliwell B: Oxidant and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson's disease, Alzheimer's disease, traumatic injury or stroke? Acta Neurol Scand Suppl 126: 23-33, 1989

    Google Scholar 

  41. Babu GN, Bawari M: Single microinjection of L-glutamate induces oxidative stress in discrete regions of rat brain. Biochem Mol Biol Int 43: 1207-1217, 1997

    Google Scholar 

  42. Bhardwaj SK, Sharma ML, Gulati G, Chabbra A, Kaushik R, Sharma P, Kaur G: Effect of starvation and insulin induced hypoglycemia on oxidative stress scavenger system and electron transport chain complexes from rat brain, liver and kidney. Mol Chem Neuropathol 34: 157-168 1998

    Google Scholar 

  43. Chen LH: Interaction of vitamin E and ascorbic acid. In Vivo 3: 199-210, 1989

    Google Scholar 

  44. Retsky SC, Frei B: Vitamin C prevents metal ion-dependent initiation and propagation of lipid peroxidation in human low-density lipoprotein. Biochim Biophys Acta 1257: 279-287, 1995

    Google Scholar 

  45. Dawson VL, Dawson TM, London Ed, Bredt DS, Snyder SH: Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88: 6368-6371, 1991

    Google Scholar 

  46. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA: Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartatae or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92: 7162-7166, 1995

    Google Scholar 

  47. Budd SL, Nichollas DG: A reevaluation of the role of mitochondria in neuronal calcium homeostasis. J Neurochem 66: 403-411, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Arora Mann, K., Kaur Mangat, H. et al. Prolonged glutamate excitotoxicity: Effects on mitochondrial antioxidants and antioxidant enzymes. Mol Cell Biochem 243, 139–145 (2003). https://doi.org/10.1023/A:1021668314070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021668314070

Navigation