Skip to main content
Log in

The Intestinal LABs

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The complete gastrointestinal (GI) tract of humans is colonised soon after birth by a myriad of microbial species with a characteristic distribution depending on the location. GI-tract ecology has been experiencing a revival due to the development of molecular techniques, especially those based on 16S RNA (zRNA) genes. A richer ecosystem than previously imagined of novel species is being discovered that is significantly influenced by our host genotype. Special attention has been focused on the bifidobacteria and the lactic acid bacterial (LAB) populations, both those that are naturally present within this complex ecosystem and those that are ingested as probiotics in functional foods. Overall this interest stems from a increasing awareness of interplay between microflora, diet and the health of the host, and is further stimulated by an increasing incidence of gastrointestinal illnesses and atopy. Substantial documentation of benefits to host health has especially distinguished the LAB for multidisciplinary research aimed to determine the molecular mechanisms involved. Recent advances in molecular technologies, including high-throughput genomics-based approaches, can significantly advance our understanding of the microbe–diet–host interactions and offer valuable information for design and application of health-targeted microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ben Amor K, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, de Vos WM&Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of the viable, injured and dead cells of bifidobacteria during bile salt stress. Submitted.

  • Bengmark S (2000) Bacteria for optimal health. Nutr. 16: 611–615.

    Google Scholar 

  • Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am. J. Clin. Nutr. 73S: 399S–405S.

    Google Scholar 

  • Biavati B, Sorbati B& Scardovi V (1991) The genus Bifidobacterium. In: Balows A, Truper HG, Dworkin M, Harder W& Schleifer KH (Eds) The Prokaryotes, 2nd edn. (pp 816–833). Springer-Verlag, New York.

    Google Scholar 

  • Blum S, Reniero R, Schiffrin EJ, Crittenden R, Mattila-Sandholm T, Ouwehand AC, Salminen S, von Wright A, Saarela M, Saxelin M, Collins K& Morelli L (1999) Adhesion studies for probiotics: need for validation and refinement. Trends Food Sci. Technol. 10: 405–410.

    Google Scholar 

  • Boot HJ& Pouwels PH (1996) Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol. Microbiol. 21: 1117–1123.

    Google Scholar 

  • Bunthof CJ, Bloemen K, Breeuwer P, Rombouts FM& Abee T (2001) Flow cytometric assessment of viability of lactic acid bacteria. Appl. Environ. Microbiol. 67: 2326–2335.

    Google Scholar 

  • Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G& Podolsky DK (2002) Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Path. 160: 165–173.

    Google Scholar 

  • Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69: 1046S–1051S.

    Google Scholar 

  • Chaussee MS, Watson RO, Smoot JC& Musser JM (2001) Identification of Rgg-regulated exoproteins of Streptococcus pyogenes. Infect. Immun. 69: 822–831.

    Google Scholar 

  • Christiaens H, Leer RJ, Pouwels PH& Verstraete W(1992) Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 58: 3792–3798.

    Google Scholar 

  • Collins MD, Rodrigues U, Aguirre M, Farrow JAE, Martinez-Murcia A, Philips BA, Williams AM& Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol. Lett. 77: 5–12.

    Google Scholar 

  • Corthier G, Delorme C, Ehrlich SD& Renault P (1998) Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl. Environ. Microbiol. 64: 2721–2722.

    Google Scholar 

  • Crittenden R, Saarela M, Mättö J, Ouwehand AC, Salminen S, Pelto L, Vaughan EE, de Vos WM, von Wright A, Fondén R& Mattila-Sandholm T (2002) Lactobacillus paracasei F19: survival, ecology and safety in the human intestinal tract. Microbial Ecol. Health Dis. S3: 22–26.

    Google Scholar 

  • De Angelis M, Bini L, Pallini V, Cocconcelli PS& Gobbetti M (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147: 1863–1873.

    Google Scholar 

  • DePlancke B, Hristova KR, Oakley HA, McCracken VJ, Aminov R, Mackie RI& Gaskins HR (2000) Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 66: 2166–2174.

    Google Scholar 

  • De Roos NM& Katan MB (2000) Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 71: 405–411.

    Google Scholar 

  • De Vos (2001) Advances in genomics for microbial food fermentations and safety. Curr. Opin. Biotechnol. 12: 493–498.

    Google Scholar 

  • Drouault S, Corthier G, Ehrlich SD, Renault P (1999) Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl. Environ. Microbiol. 65: 4881–4886.

    Google Scholar 

  • Dunne C, Murphy L, Flynn S, O'Mahony L, O'Halloran S, Feeney M, Morrissey D, Thornton G, Fitzgerald G, Daly C, Kiely B, Quigley EM, O'Sullivan GC, Shanahan F& Collins JK (1999) Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Van Leeuwenhoek 76: 279–292.

    Google Scholar 

  • Ëlkins CA& Savage DC (1998) Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J. Bacteriol. 180: 4344–4349.

    Google Scholar 

  • Falk PG, Hooper LV, Midtvedt T& Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62: 1157–1170.

    Google Scholar 

  • Favier C, Vaughan EE, De Vos WM& Akkermans ADL (2002) Molecular Monitoring of succession of bacterial communities in human neonates. Appl. Envir. Microbiol. 68: 219–226.

    Google Scholar 

  • Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F& Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with groupspecific 16S rRNA-targeted oligonucleotide probes. Appl. Envir. Microbiol. 64: 3336–3345.

    Google Scholar 

  • Geoffroy M-C, Guyard C, Quatannens B, Pavan S, Lange M& Mercenier A (2000) Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl. Environ. Microbiol. 66: 383–391.

    Google Scholar 

  • Gouesbet G, Jan G& Boyaval P (2002) Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Appl. Environ. Microbiol. 68: 1055–1063.

    Google Scholar 

  • Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A& Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65: 1071–1077.

    Google Scholar 

  • Graves PR& Haystead TA (2002) Molecular biologist's guide to proteomics. Microbiol. Mol. Biol. Rev. 66: 39–63.

    Google Scholar 

  • Haller D, Bode C, Hammes WP, Pfeifer AM, Schiffrin EJ& Blum S (2000) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 2000. 47: 79–87.

    Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J& Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245–249.

    Google Scholar 

  • Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG& Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30: 61–67.

    Google Scholar 

  • Harmsen HJM, Elfferich P, Schut P& Welling GW (1999a) A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridisation. Microbial Ecology in Health and Disease 11: 3–12.

    Google Scholar 

  • Harmsen HJM, Gibson GR, Elfferich P, Raangs GC, Wildeboer-Veloo ACM, Argaiz A, Roberfroid MB& Welling GW (1999b) Comparison of viable cell counts and fluorescence in situ hybridisation using specific rRNA-based probes for the quantification of human fecal bacteria. FEMS Microbiol. Lett. 183: 125–129.

    Google Scholar 

  • He F, Ouwehand AC, Isolauri E, Hashimoto H, Benno Y& Salminen S (2001a) Comparison of mucosal adhesion and species identification of bifidobacteria isolated from healthy and allergic infants. FEMS Immunol. Med. Microbiol. 30: 43–47.

    Google Scholar 

  • He F, Ouwehand A, Isolauri E, Hosoda M, Benno Y& Seppo S (2001b) Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr. Microbiol. 43: 351–354.

    Google Scholar 

  • Heilig GHJ, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL& de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA Appl. Envir. Microbiol. 68: 114–123.

    Google Scholar 

  • Hooper LV& Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292: 1115–1118.

    Google Scholar 

  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG& Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881–884.

    Google Scholar 

  • Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG& Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect. Immun. 70: 1254–1259.

    Google Scholar 

  • Jansen GJ, Wildeboer-Veloo AC, Tonk RH, Franks AH& Welling GW (1999) Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J. Microbiol. Methods 37: 215–221.

    Google Scholar 

  • Kilstrup M, Jacobsen S, Hammer K& Vogensen FK (1997) Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microbiol. 63: 1826–1837.

    Google Scholar 

  • Kimura K, McCartney AL, McConnell MA& Tannock GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigations of the immunological responses of their human hosts to the predominant strains. Appl. Environ. Microbiol. 63: 3394–3398.

    Google Scholar 

  • Kitts LC (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr. Issues Intest. Microbiol. 2: 17–25.

    Google Scholar 

  • Klaenhammer TRK, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent J, Cano R, Chaillou S, Deutscher J, Gasson M, van de Guchte M, Guzzo J, Hawkins T, Hols P, Hutkins R, Kleerebezem M, Kok J, Kuipers O, Lubbers M, Maguin E, McKay L, Mills D, Nauta A, Overbeek R, Pel H, Pridmore D, Saier M, van Sinderen D, Sorokin A, Steele J, O'Sullivan D, de Vos W, Weimer B, Zagorec M&Siezen R (2002) Discovering lactic acid bacteria by genomics Antonie van Leeuwenhoek. This issue.

  • Kleessen B, Bezirtzoglu & Matto J (2000) Culture based knowledge on biodiversity, development and stability of human gastrointestinal microflora. Microb. Ecol. Health Dis. Suppl. 2: 53–63.

    Google Scholar 

  • Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL& Comstock LE (2001) Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414: 555–558.

    Google Scholar 

  • Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis G, Wilkinson MHF& Welling GW (1995) Quantitative fluorescence in situ hybridisation of Bifidobacterium spp. with genusspecific 16S rRNA targetted probe and its application in fecal samples. Appl. Environ. Microbiol. 61: 3069–3075.

    Google Scholar 

  • Lesuffleur T, Porchet N, Aubert JP, Swallow D, Gum JR, Kim YS, Real FX& Zweibaum A (1993) Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J. Cell. Sci. 106: 771–83.

    Google Scholar 

  • Lim EM, Ehrlich SD& Maguin E (2000) Identification of stressinducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21: 2557–2561.

    Google Scholar 

  • Mack DR, Michail S, Wei S, McDougall L& Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Amer. J. Physiol. 276: G941–G950.

    Google Scholar 

  • Mackie RI, Sghir A& Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999 69: 1035S–1045S.

    Google Scholar 

  • Marteau P, Pochart P, Dore J, Bera-Maillet C, Bernalier A& Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol. 67: 4939–4942.

    Google Scholar 

  • Matsuki T, Watanabe K, Tanaka R& Oyaizu H (1998) Rapid identification of human intestinal bifidobacteria by 16S rRNA-targeted species-and group-specific primers. FEMS Microbiol. Lett. 167: 113–121.

    Google Scholar 

  • Mattila-Sandholm T, Blaut M, Daly C, De Vuyst L, Dore J, Gibson G, Goossens H, Knorr D, Lucas J, Lähteenmaki L, Mercenier A, Saarela M, Shahanan F&de Vos WM (2002a) Food, GItract functionality and Human health cluster, PROEUHEALTH. Microbial Ecol. Health Dis. In press.

  • Mattila-Sandholm T, Myllärinen, Crittenden R, Mogensen G, Fondén R & Saarela M, (2002b) Technological challenges for future probiotic foods. Int. Dairy J. 12: 173–182.

    Google Scholar 

  • McCartney AL, Wenzhi W& Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl. Environ. Microbiol. 62: 4608–4613.

    Google Scholar 

  • Mitsuoka T (1992) The human gastrointestinal tract. In: Wood BJB (Ed) The Lactic Acid Bacteria. Vol.1, The Lactic Acid Bacteria in Health and Disease (pp 69–114). Elsevier Applied Science, London, UK.

    Google Scholar 

  • Miyake T, Watanabe K, Watanabe T& Oyaizu H (1998) Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol. Immunol. 42: 661–667.

    Google Scholar 

  • Moore WE& Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27: 961–979.

    Google Scholar 

  • Morelli L, Cesena C, de Haen C& Gozzini L (1998) Taxonomic Lactobacillus composition of feces from human newborns during the first few days. Microb. Ecol. 35: 205–212.

    Google Scholar 

  • Muyzer G& Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127–141.

    Google Scholar 

  • Nakayama J, Akkermans ADL&de Vos WM (2002) Genomic survey of two-component regulatory systems putatively involved in peptide pheromone mediated quorum sensing of low G+C gram-positive bacteria. Submitted.

  • Neutra RN& Forstner JF (1987) Gastrointestinal mucus: synthesis, secretion and function. In: Johnson LR (Ed) Physiology of the Gastrointestinal Tract, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Ouwehand AC, Salminen S, Tölkkö S, Roberts P, Ovaska J& Salminen E (2002) Resected human colonic tissue: new model for characterizing adhesion of lactic acid bacteria. Clin. Diagn. Lab. Immunol. 9: 184–186.

    Google Scholar 

  • Ouwehand AC, Tuomola EM, Lee YK& Salminen E (2001) Microbial interactions to intestinal mucosal models. Methods Enzymol. 337: 200–212.

    Google Scholar 

  • Patent, TNO, International Patent (1996) PCT/NL96/00409.

  • Phelps TJ, Palumbo AV& Beliaev AS (2002) Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints. Curr. Opin. Biotechnol. 13: 20–24

    Google Scholar 

  • Randazzo CL, Torriani S, Akkermans ADL, de Vos WM& Vaughan EE (2002) Diversity, dynamics and activity of bacterial communities during production of an artisanal sicilian cheese as evaluated by 16S rRNA analysis. Appl Environ. Microbiol. 68: 1882–1892.

    Google Scholar 

  • Rang CU, Licht TR, Midtvedt T, Conway PL, Chao L, Krogfelt KA, Cohen PS& Molin S (1999) Estimation of growth rates of Escherichia coli BJ4 in streptomycintreated and previously germfree mice by in situ rRNA hybridisation. Clin. Diag. Lab. Immunol. 6: 434–436.

    Google Scholar 

  • Rechinger KB, Siegumfeldt H, Svendsen I& Jakobsen M (2000) 'Early' protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S] methionine labeling and twodimensional gel electrophoresis. Electrophoresis 21: 2660–2669.

    Google Scholar 

  • Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr. Issues Intest. Microbiol 2: 43–53.

    Google Scholar 

  • Rokbi B, Seguin D, Guy B, Mazarin V, Vidor E, Mion F, Cadoz M& Quentin-Millet M-J (2001) Assessment of Helicobacter pylori gene expression within mouse and human gastric mucosae by real time reverse transcriptase PCR. Infect. Immun. 69: 4759–4766.

    Google Scholar 

  • Roos S& Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148: 433–442.

    Google Scholar 

  • Roos S, Lindgren S& Jonsson H (1999) Autoaggregation of Lactobacillus reuteri is mediated by a putative DEAD-box helicase. Mol Microbiol. 32: 427–436.

    Google Scholar 

  • Roos S, Aleljung P, Robert N, Lee B, Wadstrom T, Lindberg M& Jonsson H (1996) A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system? FEMS Microbiol. Lett. 144: 33–38.

    Google Scholar 

  • Salminen S, Deighton MA, Benno Y& Gorbach SL (1998) Lactic acid bacteria in health and disease. In: Salminen S& von Wright A (Eds) Lactic Acid Bacteria. Microbiology and Functional Aspects, 2nd edn. (pp 211–253). Marcel Dekker, Inc., New York.

    Google Scholar 

  • Satokari RM, Vaughan EE, Akkermans AD, Saarela M& de Vos WM (2001a) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 504–513.

    Google Scholar 

  • Satokari RM, Vaughan EE, Akkermans AD, Saarela M& De Vos WM (2001b) Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst. Appl. Microbiol. 24: 227–231.

    Google Scholar 

  • Satokari RM, Vaughan EE, Favier CF, Doré J, Edwards C&de Vos WM (2002) Diversity of Bifidobacterium and Lactobacillus spp. in breast-fed and formula-fed infants as assessed by 16S rDNA sequence differences. Microbiol. Ecol. Health Dis. In press.

  • Schiffrin EJ, Rochat F, Link-Amster H, Aeschlimann JM& Donnet-Hughes A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78: 491–497.

    Google Scholar 

  • Schleifer KH& Ludwig W (1995) Phylogenetic relationships of lactic acid bacteria. In: Wood BJB& WH Holzapfel (Eds) The Genera of Lactic Acid Bacteria: The Lactic Acid Bacteria, Vol. 2 (pp 7–17). Chapman and Hall, Glasgow.

    Google Scholar 

  • Sghir A, Gramet G, Suau A, Rochet V, Pochart P& Dore J (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 66: 2263–2266.

    Google Scholar 

  • Shanahan F (2001) Turbo probiotics for IBD. Gastroenterology 120: 1297–1298.

    Google Scholar 

  • Simmering R& Blaut M (2001) Pro-and prebiotics-the tasty guardian angels? Appl. Microbiol. Biotechnol. 55: 19–28.

    Google Scholar 

  • Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C& Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67: 5761–5770.

    Google Scholar 

  • Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W& Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352–1355.

    Google Scholar 

  • Sternberg C, Christensen BB, Johansen T, Toftgaard Nielsen A, Andersen JB, Givskov M& Molin S (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ, Microbiol. 65: 4108–4117.

    Google Scholar 

  • Sturme MHJ, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE&de Vos WM (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek. In press.

  • Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD& Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65: 4799–4807.

    Google Scholar 

  • Swift S, Vaughan EE& de Vos WM (2000) Quorum sensing within the gut ecosystem. Microbial Ecol. Health Dis. 2S: 88–92.

    Google Scholar 

  • Tanaka H, Hashiba H, Kok J& Mierau I (2000) Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl. Environ. Microbiol. 66: 2502–2512.

    Google Scholar 

  • Tannock GW (1999) Analysis of the intestinal microflora: a renaissance. Antonie Van Leeuwenhoek 76: 265–278.

    Google Scholar 

  • Tannock GW, Munro K, Harmsen HJM, Welling GW, Smart J& Gopal PK (2000) Analysis of the faecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66: 2578–2588.

    Google Scholar 

  • Tuomola E, Crittenden R, Playne M, Isolauri E& Salminen S (2001) Quality assurance criteria for probiotic bacteria. Am. J. Clin. Nutr. 73(2S): 393S–398S.

    Google Scholar 

  • Vaughan EE, Mollet B& de Vos WM(1999) Functionality of probiotics and intestinal lactobacilli: light in the intestinal tract tunnel. Curr. Opin. Biotech. 10: 505–510.

    Google Scholar 

  • Vaughan EE, Schut F, Heilig GHJ, Zoetendal EG, de Vos WM& Akkermans ADL (2000) A molecular view of the intestinal ecosystem. Curr. Issues Intest. Microbiol. 1: 1–12.

    Google Scholar 

  • Vesa T, Pochart P& Marteau P (2000) Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG1363 in the human gastrointestinal tract. Aliment Pharmacol Ther. 14: 823–828.

    Google Scholar 

  • Vidal K, Donnet-Hughes A& Granato D (2002) Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and gram-negative bacteria. Infect. Immun. 70: 2057–2064.

    Google Scholar 

  • Walter J, Hertel C, Tannock GW, Lis CM, Munro K& Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 2578–2585.

    Google Scholar 

  • Wilson (1995) The gastrointestinal microflora. In Yamada T (Ed) Textbook of Gastroenterology (pp 607–615). JP Lippincott, Philadelphia.

    Google Scholar 

  • Winson MK& Davey HM (2000) Flow cytometric analysis of microorganisms. Methods 21: 231–240.

    Google Scholar 

  • Wouters JA, Jeynov B, Rombouts FM, de Vos WM, Kuipers OP& Abee T (1999a) Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology 145: 3185–3194.

    Google Scholar 

  • Wouters JA, Rombouts FM, de Vos WM, Kuipers OP& Abee T (1999b) Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302. Appl. Environ. Microbiol. 65: 4436–4442.

    Google Scholar 

  • Ye RW, Wang T, Bedzyk L& Croker KM (2001) Applications of DNA microarrays in microbial systems. J. Microbiol. Methods 47: 257–272.

    Google Scholar 

  • Zoetendal EG, Akkermans ADL& de Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human faecal samples reveals stable and host specific communities of active bacteria. Appl. Environ. Microbiol. 64: 3854–3859.

    Google Scholar 

  • Zoetendal EG, Akkermans ADL& de Vos WM (2001a) Molecular characterisation of bacterial communities in the human gastrointestinal tract. PhD thesis, Wageningen University, The Netherlands.

    Google Scholar 

  • Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, de Visser JAGM& de Vos WM (2001b) The host genotype affects the bacterial community in the human gastrointestinal tract. Microbial Ecol. Health Dis. 13: 129–134.

    Google Scholar 

  • Zoetendal EG, Ben-Amor K, Akkermans ADL, Abee T& de Vos WM (2001c) DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. System. Appl. Microbiol. 24: 405–410.

    Google Scholar 

  • Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans ADL& de Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 68: 3401–3407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine E. Vaughan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, E.E., de Vries, M.C., Zoetendal, E.G. et al. The Intestinal LABs. Antonie Van Leeuwenhoek 82, 341–352 (2002). https://doi.org/10.1023/A:1020672724450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020672724450

Navigation