Skip to main content
Log in

Synthesis of (R)-2-phenylpropanoic acid from its racemate through an isomerase-involving reaction by Nocardia diaphanozonaria

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

(R)-2-Phenylpropanoic acid was synthesized from the racemic acid through an isomerization reaction involving resting cells of Nocardia diaphanozonaria JCM3208. The isomerization activity of the cells was enhanced 25-fold by adding 5.5 mM racemic 2-phenylpropanoic acid to the culture medium. When 5 mM racemic 2-phenylpropanoic acid was included in the reaction mixture (4 ml) containing resting cells (100 mg dry cell wt) in 25 mM K2HPO4/KH2PO4 buffer (pH 7.0) at 30 °C for 8 h, 4.56 mM (R)-2-phenylpropanoic acid (95.8% e.e.) was formed with a 91% molar conversion yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arroyo M, Sinisterra JV (1994) High enantioselective esterification of 2-arylpropionic acids catalyzed by immobilized lipase from Candida antarctica: a mechanistic approach. J. Org. Chem. 59: 4410–4417.

    Google Scholar 

  • Battistel E, Bianchi D, Cesti P, Pina C (1991) Enzymatic resolution of (S)-(+)-naproxen in a continuous reactor. Biotechnol. Bioeng. 38: 659–664.

    Google Scholar 

  • Chen CS, Shieh WR, Lu PH, Harriman S, Chen CY (1991) Metabolic stereoisomeric inversion of ibuprofen in mammals. Biochim. Biophys. Acta. 1078: 411–417.

    Google Scholar 

  • Gandolfi R, Gualandris R, Zanchi C, Molinari F (2001) Resolution of (RS)-2-phenylpropanoic acid by enantioselective esterification with dry microbial cells in organic solvent. Tetrahedron: Asymmetry 12: 501–504.

    Google Scholar 

  • Gu QM, Chen CS, Sih CJ (1986) A facile enzymatic resolution process for the preparation of (+)-S-2-(6-methoxy-2-naphthyl)propionic acid (Naproxen). Tetrahedron Lett. 27: 1763–1766.

    Google Scholar 

  • Hall SD, Xiaotao Q (1994) The role of coenzyme A in the biotransformation of 2-arylpropionic acid. Chem. Biol. Interact. 90: 235–251.

    Google Scholar 

  • Hanlon GW, Kooloobandai A, Hutt AJ (1994) Microbial metabolism of 2-arylpropionic acid: effect of environmental on the metabolism of ibuprofen by Verticillum lecanii. J. Appl. Bacteriol. 76: 442–447.

    Google Scholar 

  • Hung YF, ThomasonMJ, Rhys-WilliamsW, Lloyd AW, Hanlon GW (1996) Chiral inversion of 2-phenylpropionic acid by Cordyceps militalis. J. Appl. Bacteriol. 81: 242–250.

    Google Scholar 

  • Hutt AJ, Kooloobandai A, Hanlon GW (1993) Microbial metabolism of 2-arylpropionic acids: chiral inversion of ibuprofen and 2-phenylpropionic acid. Chirality 5: 596–601.

    Google Scholar 

  • Kato D, Mitsuda S, Ohta H (2002) Microbial deracemization of alpha-substituted carboxylic acids. Org. Lett. 4: 371–373.

    Google Scholar 

  • Kato K, Gong Y, Tanaka S, Katayama M, Kimoto H (1999) Optical resolution of 2-(3-indolyl)propionic acid with Mucor javanicus and α-chymotrypsin. Biotechnol. Lett. 21: 457–461.

    Google Scholar 

  • Knihinicki RD, Day RO, Williams KM (1991) Chiral inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs-II. Racemization and hydrolysis of (R)-and (S)-ibuprofen-CoA thioesterase. Biochem. Pharmacol. 42: 1905–1911.

    Google Scholar 

  • Knights KM, Talbot, UM, Baillie TA (1992) Evidence of multiple forms of rat liver microsomal coenzyme A ligase catalyzing the formation of 2-arylpropionyl-coenzyme A thioesters. Biochem. Pharmacol. 44: 2415–2417.

    Google Scholar 

  • Landoni MF, Soraci A (2001) Pharmacology of chiral compounds: 2-arylpropionic acid derivatives. Curr Drug. Metab. 2: 37–51.

    Google Scholar 

  • Lee EDJ, Williams KM, Graham GG, Day RO, Champion GD (1984) Liquid chromatographic determination and plasma concentration profile of optical isomers of ibuprofen in mammals. J. Pharm. Sci. 73: 1542–1544.

    Google Scholar 

  • López-Belmonte MT, Alcántara AR, Sinisterra JV (1997) Enantioselective esterification of 2-arylpropionic acids catalyzed by immobilized Rhizomucor miehei lipase. J. Org. Chem. 62: 1831–1840.

    Google Scholar 

  • Morrone R, Nicolosi G, Patti A, Piatelli M (1995) Resolution of racemic flurbiprofen by lipase-mediated esterification in organic solvent. Tetrahedron: Asymmetry 6: 1773–1178.

    Google Scholar 

  • Mustranta A (1992) Use of lipases in the resolution of racemic ibuprofen. Appl. Microbiol. Biotechnol. 38: 61–66.

    Google Scholar 

  • Phillips GT (1990) Biotransformations and their role in industrial synthesis. In: Proceeding of the Chiral 90 Symposium, pp. 17–22.

  • Rantakylä M, Aaltonen O (1994) Enantioselective esterification of ibuprofen in supercritical carbon dioxide by immobilized lipase. Biotechnol. Lett. 16: 825–830.

    Google Scholar 

  • Reichel C, Bang H, Brune K, Geisslinger G, Menzel S (1995) 2-Arylpropionyl-CoA epimerase, partial peptide sequences and tissue localization. Biochem. Pharmacol. 50: 1803–1806.

    Google Scholar 

  • Reichel C, Brugger R, Bang H, Geisslinger G, Brune K (1997) Molecular cloning and expression of a 2-arylpropionyl coenzyme A epimerase: a key enzyme in the inversion metabolism of ibuprofen. Mol. Pharmacol. 51: 576–582.

    Google Scholar 

  • Rhys-Williams W, Thomason MJ, Lloyd AW, Hanlon GW (1996) Demonstration of the chiral inversion of 2-phenylpropionic acid by cell free extract from Verticilium lecanii. Pharm. Sci. 2: 537–540.

    Google Scholar 

  • Rhys-Williams W, McCarthy J, Baker JA, Hung YF, Thomason MJ, Lloyd AW, Hanlon GW (1998) A mechanistic inversion into the microbial chiral inversion of 2-arylpropionic acids using deuterated derivatives of 2-phenylpropionic acid. J. Enzyme Microb. Technol. 22: 281–287.

    Google Scholar 

  • Rhys-Williams W, Thomason MJ, Hanlon GW, Lloyd AW (1998) Extent of chiral inversion of 2-arylpropionic acids by Cordyceps millitaris. Chirality 10: 528–534.

    Google Scholar 

  • Sánchez A, Valero F, Lafuente R, Sola C (1998) Enantioselective esterification of 2-arylpropionic acids and trans-2-phenyl-1-cyclohexanol: comparison between immobilized lipases from Candida rugosa and Rhizomucor miehei. Biotechnol. Lett. 20: 1145–1148.

    Google Scholar 

  • Sánchez A, Ferrer P, Serrano A, Valero F, Sola C, Pernas M, Rua ML, Fernandez-Lafuente, R, Guisan JM, de la Casa R, Sinisterra JV, Sánchez-Montero JM (1999) A controlled fed-batch cultivation for the production of new crude lipase from Candida rugosa with improved properties in fine chemistry. J. Biotechnol. 69: 169–182.

    Google Scholar 

  • Sevoz C, Benoit E, Buronfosse T (2000) Thioesterification of 2-arylpropionic acid by recombinant acyl-coenzyme A synthetases (ACS1 and ACS2). Drug Metab. Dispos. 28: 398–402.

    Google Scholar 

  • Shieh WR, Chen CS (1993) Purification and characterization of novel 2-arylpropionyl-CoA epimerase from rat liver and mitochondria. J Biol. Chem. 268: 3487–3493.

    Google Scholar 

  • Thomason MJ, Rhys-Williams W, Lloyd AW, Hanion GW (1997) Optimization of the chiral inversion of 2-phenylpropionic acid by Verticillum lecanii. J. Pharm. Pharmacol. 49: 263–269.

    Google Scholar 

  • Thomason MJ, Rhys-Williams W, Hung YF, Baker JA, Hanlon GW, Lloyd AW (1997) A mechanistic investigation into the microbial chiral inversion of 2-phenylpropionic acid by Verticillum lecanii. Chirality 9: 254–260.

    Google Scholar 

  • Thomason MJ, Rhys-Williams W, Lloyd AW, Hanlon GW (1998) The stereoinversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs and structurally related compounds by Verticillium lecanii. J. Appl. Microbiol. 85: 155–163.

    Google Scholar 

  • Tracy TS, Hall SD (1991) Determination of the epimeric composition of ibuprofenyl-CoA. Anal. Biochem. 195: 24–29.

    Google Scholar 

  • Tracy TS, Hall SD (1992) Metabolic inversion of (R)-ibuprofen, epimerization and hydrolysis of ibuprofenyl-CoA. Drug Metat. Dispos. 20: 322–327.

    Google Scholar 

  • Tsai SW, Wei HJ (1994) Enantioselective esterification of racemic naproxen by lipases in organic solvent. Enzyme Microb. Technol. 16: 328–333.

    Google Scholar 

  • Tsai SW, Lin BY, Chang CS (1996) Enhancement of (S)-naproxen ester productivity from racemic naproxen by lipase in organic solvents. J. Chem. Tech. Biotechnol. 65: 156–162.

    Google Scholar 

  • Wechter WJ (1994) Drug chirality: on the mechanism of Rarylpropionic acid class NSAIDs epimerization in humans and the clinical implications for the use of racemates. J. Clin. Pharmacol. 34: 1036–1042.

    Google Scholar 

  • Yang H, Henke E, Bornscheuer UT (1999) The use of vinyl esters significantly enhanced enantioselectivities and reaction rates in lipase-catalyzed resolutions of arylaliphatic carboxylic acids. J. Org. Chem. 64: 1709–1712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsukura, K., Yoshida, T. & Nagasawa, T. Synthesis of (R)-2-phenylpropanoic acid from its racemate through an isomerase-involving reaction by Nocardia diaphanozonaria . Biotechnology Letters 24, 1615–1621 (2002). https://doi.org/10.1023/A:1020353631566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020353631566

Navigation